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Abstract

The antiproton storage ring HESR to be constructed at GSI will open up a new
range of perturbative and nonperturbative tests of QCD in exclusive and inclusive
reactions. I discuss 21 tests of QCD using antiproton beams which can illuminate
novel features of QCD. The proposed experiments include the formation of exotic
hadrons, measurements of timelike generalized parton distributions, the production
of charm at threshold, transversity measurements in Drell-Yan reactions, and searches
for single-spin asymmetries. The interactions of antiprotons in nuclear targets will
allow tests of exotic nuclear phenomena such as color transparency, hidden color,
reduced nuclear amplitudes, and the non-universality of nuclear antishadowing. The
central tool used in these lectures are light-front Fock state wavefunctions which en-
code the bound-state properties of hadrons in terms of their quark and gluon degrees
of freedom at the amplitude level. The freedom to choose the light-like quantization
four-vector provides an explicitly covariant formulation of light-front quantization
and can be used to determine the analytic structure of light-front wave functions.
QCD becomes scale free and conformally symmetric in the analytic limit of zero
quark mass and zero β function. This “conformal correspondence principle” deter-
mines the form of the expansion polynomials for distribution amplitudes and the
behavior of non-perturbative wavefunctions which control hard exclusive processes
at leading twist. The conformal template also can be used to derive commensurate
scale relations which connect observables in QCD without scale or scheme ambiguity.
The AdS/CFT correspondence of large NC supergravity theory in higher-dimensional
anti-de Sitter space with supersymmetric QCD in 4-dimensional space-time has im-
portant implications for hadron phenomenology in the conformal limit, including the
nonperturbative derivation of counting rules for exclusive processes and the behav-
ior of structure functions at large xbj . String/gauge duality also predicts the QCD
power-law fall-off of light-front Fock-state hadronic wavefunctions with arbitrary or-
bital angular momentum at high momentum transfer. I also review recent work which
shows that the diffractive component of deep inelastic scattering, single spin asym-
metries, as well as nuclear shadowing and antishadowing, cannot be computed from
the LFWFs of hadrons in isolation.
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1 Introduction

Quantum Chromodynamics is a remarkable theory. Not only does it provide a con-
sistent description of the strong and nuclear interactions in terms of quark and gluon
degrees of freedom at short distances, but its non-Abelian Yang Mills gauge the-
ory structure also provides the foundation for the electroweak interactions and the
eventual unification of the electrodynamic, weak, and hadronic forces at very short
distances. The theory has extraordinary properties, such as color confinement [1],
asymptotic freedom [2, 3], a complex vacuum structure, and predicts an array of new
forms of hadronic matter such as gluonium and hybrid states [4]. The phase structure
of QCD [5] implies the formation of a quark-gluon plasma in high energy heavy ion
collisions [6] as well insight into the evolution of the early universe [7].

The asymptotic freedom property of QCD explains why the strong interactions be-
come weak at short distances, thus allowing hard processes to be interpreted directly
in terms of the perturbative interactions of quark and gluon quanta. This in turn
leads to factorization theorems [8, 9] for both inclusive and exclusive processes [10]
which separate the hard scattering subprocesses which control the reaction from the
nonperturbative physics of the interacting hadrons.

More recently, a remarkable duality has been established between supergravity
string theory in 10 dimensions and conformal supersymmetric extensions of QCD [11,
12, 13, 14]. The AdS/CFT correspondence is now leading to a new understanding of
QCD at strong coupling and the implications of its nearly-conformal structure.

The Lagrangian density of QCD [15] has a deceptively simple form:

L = ψ(iγµD
µ −m)ψ − 1

4
G2

µν (1)

where the covariant derivative is iDµ = i∂µ−gAµ and where the gluon field strength is
Gµν = i

g
[Dµ, Dν ]. The structure of the QCD Lagrangian is dictated by two principles:

(i) local SU(NC) color gauge invariance – the theory is invariant when a quark field
is rotated in color space and transformed in phase by an arbitrary unitary matrix
ψ(x) → U(x)ψ(x) locally at any point xµ in space and time; and (ii) renormalizability,
which requires the appearance of dimension four interactions. In principle, the only
parameters of QCD are the quark masses and the QCD coupling determined from a
single observable at a single scale.

Solving QCD is extremely challenging because of the non-Abelian three-point and
four-point gluonic couplings contained in its Lagrangian. Exact solutions are known
for QCD(1 + 1) at NC → ∞ by ’t Hooft [16]. The one-space one-time theory can be
solved numerically to any precision at finite NC for any coupling strength and number
of quark flavors using discretized light-cone quantization (DLCQ) [17, 18, 19, 20].
One can use DLCQ to calculate the entire spectrum of virtually any 1+1 theory, its
discrete bound states as well as the scattering continuum. The main emphasis of
the DLCQ method applied to QCD is the determination of the wavefunctions of the
hadrons from first principles.
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Currently the most important computational tool for making predictions in strong-
coupling QCD(3+1) is lattice gauge theory [21] which has made enormous progress
in recent years particularly in computing mass spectra and decay constants. Lattice
gauge theory can only provide limited dynamical information because of the difficulty
of continuing predictions from Euclidean to Minkowski space. At present, results are
limited to large quark and pion masses such that the ρ meson is stable [22]. The
DLCQ solutions for 1+1 quantum field theories could provide a powerful test of
lattice methods.

Other important nonperturbative QCD methods are Dyson-Schwinger techniques [23]
and the transverse lattice [24] which combines DLCQ methods for the one space and
one time theory with lattice methods in transverse space. The Dyson-Schwinger meth-
ods account well for running quark mass effects, and in principle can give important
hadronic wavefunction information. The transverse lattice method has recently pro-
vided the first computation of the generalized parton distributions of the pion [24].

Light Front Wavefunctions [20]: The concept of a wave function of a hadron as
a composite of relativistic quarks and gluons is naturally formulated in terms of the
light-front Fock expansion at fixed light-front time [25], τ = x · ω. The four-vector
ω, with ω2 = 0, determines the orientation of the light-front plane; the freedom to
choose ω provides an explicitly covariant formulation of light-front quantization [26].
The light-front wave functions (LFWFs) ψn(xi, k⊥i

, λi), with xi = ki·ω
P ·ω ,

∑n
i=1 xi = 1,∑n

i=1 k⊥i
= 0⊥, are the coefficient functions for n partons in the Fock expansion,

providing a general frame-independent representation of the hadron state. The λi

are the eigenvalues of the spin projections Sz in the ẑ direction. Angular momentum
conservation for each Fock state implies

Jz =
n∑

i

Sz
i +

n−1∑

i

Lz
i (2)

where Lz is one of the n − 1 relative orbital angular momentum. Relativity and
quantum theory require that the number of Fock states cannot be bounded. However,
the probability of massive Fock states with invariant mass M falls-off at least as fast
as 1/M2.

The LFWFs are boost invariant; i.e., independent of Lorentz frame. In principle,
they are solutions of the LF Heisenberg equation where HLF is computed from the
theory quantized at fixed τ. As I will review in these lectures, given the LFWFs,
one can calculate a myriad of dynamical processes. The LFWFs of hadrons are thus
centerposts of the theory [27].

The Light-Front Fock state expansion provides a number of new perspectives for
QCD:

Intrinsic Glue and Sea: Even though QCD was motivated by the successes of the
parton model, QCD predicts many new features which go well beyond a three-quark
bound state description of the proton. Since the number of Fock components cannot
be limited in relativity and quantum mechanics, the nonperturbative wavefunction of
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a proton contains gluons and sea quarks, including heavy quarks, at any resolution
scale. Thus there is no scale Q0 in deep inelastic lepton-proton scattering where the
proton can be approximated by its valence quarks. The sea-quark distributions Q(x)
and Q(x) are not equal [28].

Initial and Final-State Interactions: Although it has been more than 35 years
since the discovery of Bjorken scaling [29] in electroproduction [30], there are still
many issues in deep-inelastic lepton scattering and Drell-Yan reactions which are only
now being understood from a fundamental basis in QCD. In contrast to the parton
model, final-state interactions in deep inelastic scattering and initial state interac-
tions in hard inclusive reactions cannot be neglected – leading to T−odd single spin
asymmetries [31, 32, 33] and diffractive contributions [34, 35]. This in turn implies
that the structure functions measured in deep inelastic scattering are not probability
distributions computed from the square of the LFWFs computed in isolation [34].

Novel Nuclear Phenomena: In the case of nuclei, QCD predicts that nuclear wave-
functions contain “hidden color” [36] components: color configurations not dual to
the usual nucleonic degrees of freedom. For example, the scaling of the deuteron’s
reduced form factor suggests that the probability of six-quark Fock states with a
color configuration orthogonal to that of the proton and neutron is of order of 15%.
I will also discuss in these lectures other surprising features of QCD which contrast
with standard nuclear physics descriptions, such as “color transparency” [37], the
physical origin of antishadowing [38] and its nonuniversal character [39]. As I will
discuss, the antishadowing of nuclear structure functions is quark-flavor specific; this
implies that part of the anomalous NuTeV [40] result for sin2 θW could be due to the
non-universality of nuclear antishadowing for charged and neutral currents.

I will also several topics in which the underlying conformal symmetry of QCD
plays a crucial role:

AdS/CFT Correspondence and QCD: The AdS/CFT correspondence [11, 12, 13,
14] between superstring theory in 10 dimensions and supersymmetric Yang Mills
theory in 3+1 dimensions can provide important information on QCD phenomena
without reliance on perturbation theory. As I will discuss in these lectures, one can
use this connection to establish the form of QCD wavefunctions at large transverse
momentum k2

⊥ → ∞ and at x→ 1 [41]. The AdS/CFT correspondence has important
implications for hadron phenomenology in the conformal limit, including an all-orders
demonstration of counting rules [42, 43, 44] for hard exclusive processes [12], as well
as determining essential aspects of hadronic light-front wavefunctions [41].

The Conformal Correspondence Principle [45, 46]: The recent investigations using
the AdS/CFT correspondence has reawakened interest in the conformal features of
QCD. QCD becomes scale free and conformally symmetric in the analytic limit of
zero quark mass and zero β function [47]. This correspondence principle provides
a new tool, the conformal template, which is very useful for theory analyses, such
as the expansion polynomials for distribution amplitudes [48, 49, 50, 51], the non-
perturbative wavefunctions which control exclusive processes at leading twist [52, 53].
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The conformal template also can be used to derive commensurate relations [54, 55]
which connect observables in QCD without scale or scheme ambiguity.

The classical Lagrangian of QCD for massless quarks is conformally symmetric.
Since it has no intrinsic mass scale, the classical theory is invariant under the SO(4, 2)
translations, boosts, and rotations of the Poincare group, plus the dilatations and
other transformations of the conformal group. Scale invariance and therefore confor-
mal symmetry is destroyed in the quantum theory by the renormalization procedure
which introduces a renormalization scale as well as by quark masses. Conformal
symmetry is thus broken in physical QCD; nevertheless, we can still recover the un-
derlying features of the conformally invariant theory by evaluating any expression in
QCD in the analytic limit of zero quark mass and zero β function:

lim
mq→0,β→0

OQCD = Oconformal QCD . (3)

This conformal correspondence limit is analogous to Bohr’s correspondence principle
where one recovers predictions of classical theory from quantum theory in the limit
of zero Planck constant. The contributions to an expression in QCD from its nonzero
β-function can be systematically identified [56, 55, 57] order-by-order in perturbation
theory using the Banks-Zaks procedure [58].

There are other important consequences of near-conformal behavior: the confor-
mal approximation with zero β function can be used as template for QCD analy-
ses [50, 49] such as the form of the expansion polynomials for distribution ampli-
tudes [51, 59]. The “conformal correspondence principle” also dictates the form of
the expansion basis for hadronic distribution amplitudes.

Commensurate Scale Relations: The near-conformal behavior of QCD is the basis
for commensurate scale relations [54] which relate observables to each other with-
out renormalization scale or scheme ambiguities [56]. An important example is the
generalized Crewther relation [60]. In this method the effective charges of observ-
ables are related to each other in conformal gauge theory; the effects of the nonzero
QCD β− function are then taken into account using the BLM method [61] to set
the scales of the respective couplings. The magnitude of the effective charge [62]
defined from the ratio of elastic pion and photon-to-pion transition form factors
αexclusive

s (Q2) = Fπ(Q2)/4πQ2F 2
γπ0(Q2) is connected to other effective charges and

observables by commensurate scale relations. Its magnitude, αexclusive
s (Q2) ∼ 0.8 at

small Q2, is sufficiently large as to explain the observed magnitude of exclusive am-
plitudes such as the pion form factor using the asymptotic distribution amplitude.
An analytic effective charge such as the pinch scheme [63] provides a method to unify
the electroweak and strong couplings and forces.

Fixed Point Behavior: Although the QCD coupling decreases logarithmically at
high virtuality due to asymptotic freedom, theoretical and phenomenological evidence
is now accumulating that QCD couplings based on a physical observable, such as
hadronic τ decay, becomes constant at small virtuality. It thus develops an infrared
fixed point [64, 65, 66, 67, 68]. This is in contradiction to the usual assumption of
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singular growth in the infrared. The near-constant behavior of effective couplings
also suggests that QCD can be approximated as a conformal theory even at relatively
small momentum transfer.

The Abelian Correspondence Principle: One can consider QCD predictions as
functions of analytic variables of the number of colorsNC and flavorsNF . AtNC → ∞
at fixed NCαs, calculations in QCD greatly simplify since only planar diagrams enter.
However, the NC → 0 limit is also very interesting. Remarkably, one can show
at all orders of perturbation theory [69] that PQCD predictions reduce to those of
an Abelian theory similar to QED at NC → 0 with CFαs and NF

TF CF
held fixed,

where CF =
N2

C
−1

2NC
and TF = 1/2. The resulting theory corresponds to the group

1/U(1) which means that light-by-light diagrams acquire a particular topological
factor. The NC → 0 limit provides an important check on QCD analyses; QCD
formulae and phenomena must match their Abelian analog. The renormalization
scale is effectively fixed by this requirement. Commensurate scale relations obey
the Abelian Correspondence principle, giving the correct Abelian relations between
observables in the limit NC → 0.

2 Twenty-One Key Antiproton Experiments

Experiment is critical for testing QCD and unravelling its novel features. The ad-
vent of the new antiproton storage ring HESR to be constructed at GSI and the
new PANDA detector open up a new range of perturbative and nonperturbative tests
of QCD in exclusive and inclusive reactions. These include the formation of exotic
hadrons and novel tests involving timelike generalized parton distributions, the effects
of charm at threshold, transversity, and single-spin asymmetries. The interactions of
antiprotons in nuclear targets allows tests of exotic nuclear phenomena such as color
transparency, hidden color, reduced nuclear amplitudes, and the non-universality of
nuclear antishadowing. I will also discuss the physics of the heavy-quark sea and the
role of conformal symmetry in hard exclusive processes. Most of these key experi-
ments can be performed with stored antiprotons of moderate energy Ep

lab < 15 GeV
interacting in an internal target.

1. Total Annihilation. The antiproton and proton can annihilate into a multi-
hadron inclusive state, a system potentially rich in gluonic matter. Specific
predictions for the inclusive distributions can be made in soliton-anti-soliton
models [70]. Skyrmion-anti-Skyrmion annihilation provides a fairly accurate de-
scription of low-energy baryon-antibaryon annihilation. A statistical approach
may also be useful [71]. The production of charmonium states is particularly
interesting in view of the anomalously large signal observed at Belle [72] for
e+e− → J/ψηc. The process pp → ccX where X is a glueball state could pro-
vide an important tagged source of gluonic excitations [73].
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2. Exotic Resonance Formation in pp Reactions. The strongest hadronic inter-
actions and thus the strongest opportunity to form resonances occurs when
constituents have the same 4-velocity or rapidity. In the case of pp interac-
tions, one can have total annihilation of the incident quarks and antiquarks
into open or hidden charmed hadrons; one can have “diquark” anti-diquark
qq + qq annihilation into charm quarks. These then can coalesce with the re-
maining valence quarks to produce charmed hadrons or a | qqcc〉 “quartoquark”
resonance. If a q and q annihilate to charm quarks, the remaining quarks can
produce“hectoquark” state | qqqqcc〉 . One can have cc production where all of
the incident quarks and antiquarks appear in the final state. In this last case,
one can produce “octoquark” resonances

∣∣∣uuduudcc
〉
. Thus there can be sev-

eral kinematic regimes where novel charmed hadrons can naturally appear. The
octoquark is the analog of J = 1, L = 1, S = 1 |uuduudcc〉 state postulated
to cause the large ANN at the charm threshold in transversely polarized pp
collisions [74].

3. Tests of Dimensional Counting Rules and Conformal Scaling for Hard Exclusive
Processes [42, 44, 75, 76]. The counting rule for pp annihilation into two hadrons,
photons, or leptons is

dσ

dt
(pp→ AB) =

|FAB(t/s)|2
s4+nA+nB

. (4)

where nI is the minimum number of Fock-state particles in each final-state
hadron; in the case of leptons or photons, nI = 1. For example, n = 8 for
dσ
dt

(pp → K+K−) and n = 7 for timelike photoproduction dσ
dt

(pp → π0γ) at
fixed t/s or θCM. In the case of a multiparticle final state where all particles are
produced at distinct θI

CM,

∆σ(pp→ A,B,C, ...) ∼ s
−5−

∑
I=A,B,C,...

(nI−1)
. (5)

For example, ∆σ(pp → K+K−π0) ∼ s−8. These rules can be derived from
PQCD; they also follow from conformal symmetry and the LFWFs derived from
AdS/CFT. The power-law predictions are modified by logarithmic corrections
from the non-zero QCD β function and the evolution of the hadronic distribution
amplitudes of each hadron. One also finds that Regge trajectories must become
flat, approaching negative integers at large negative t [77]. This has recently
been demonstrated within the context of AdS/CFT by Andreev and Siegel [78].

4. Hadron helicity Conservation in Exclusive Processes [79]. The helicity and
the angular dependence of large-momentum-transfer exclusive processes such
as pp → AB can be used to test gluon spin and other basic elements of per-
turbative QCD. These processes isolate QCD hard-scattering subprocesses in
situations where the helicities of all the interacting quarks are controlled. The
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predictions can be summarized in terms of a general spin selection rule which
states that the total hadron helicity is conserved:

∑

initial

λH =
∑

final

λH , (6)

up to corrections falling as an inverse power in the momentum transfer.

5. Tests of Quark Interchange Dominance in Exclusive Processes. The angular
distributions FAB(t/s) appearing in the fixed-angle scaling laws are sensitive
to the scattering mechanism as well as the shapes of the hadron distribution
amplitudes. In the limit of large NC , the dominant scattering amplitude derives
from quark interchange [80, 77, 41]. For example, the dominant scattering
mechanism for K+p→ K+p derives from the exchange of the common u quark.

The quark interchange amplitude [80] for AB → CD can be written as a con-
volution of the four light-front wavefunctions appearing in the process

∫
d2k⊥dxψA × ψB × ψC × ψD [M2

A +M2
B −M2] (7)

where M is the invariant mass of the constituents. The complete expression
is given in Ref. [80]. In the case of K+p → K+p, the interchange amplitude
scales as 1/ut2 and thus dσ/dt(K+p→ K+p) ≃ 1/s2u2t4. This agrees with the
observed scaling and angular dependence of the fixed- CM angle data. If the
u-quark exchange mechanism is dominant, then one can predict the amplitude
for pp → K+K− via s ↔ t crossing. Thus the crossed amplitude pp → K+K−

must scale as 1/ut2 and the cross section is dσ/dt(pp→ K+K−) ≃ 1/u2s6.

6. Anomalous Regge Behavior. At fixed t and large s >>> −t, one can use the
Regge expansion

M(pp→ AB) =
∑

R

βR(t)sα
R(t)ζR (8)

where αR(t) parameterizes the Regge trajectory for spacelike t and ζR(t) is the
signature factor which determines the phase of the amplitude. Remarkably, per-
turbative QCD and conformal scaling require that these trajectories approach
negative integers at large −t (−1 for meson exchange, −2 for baryon exchange
in the t channel), rather than the conventional linear trajectories normally used
in Regge theory [77]. The power behavior of βR(t) is also determined.

7. Timelike Compton Scattering [81, 82]: pp → γγ. The scaling, normalization,
and angular distribution of this fundamental process has been computed at
lowest order in the PQCD factorization framework [83]. Conformal symme-
try predicts the scaling s6 dσ

dt
(pp → γγ) = F (θcm) at large s and t. The ratio

of the timelike Compton amplitude to the timelike proton form factor is im-
portant since uncertainties from the baryon coupling Fp to three quarks (the
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same coupling which controls proton decay!) and the QCD coupling at timelike
virtuality cancel out. This normalization thus can expose the importance of
higher order corrections in αs. The angular distributions of timelike Compton
scattering including spin correlations are highly sensitive to the shape of the
proton distribution amplitude φp(xi, Q), the basic three quark wavefunction.

8. Timelike Deeply Virtual Compton Scattering pp → γ∗γ (DVCS). At large
photon virtuality, this amplitude is computable from the convolution of the
qq → γ∗γ amplitude with the timelike generalized parton distributions. Phase
information can be obtained from the interference of the DVCS amplitude
pp → ℓ+ℓ−γ with the bremsstrahlung amplitude pp → γ∗ → ℓ+ℓ−γ derived
from the timelike proton form factor which causes an ℓ+ℓ− asymmetry. The
handbag contribution to the DVCS amplitude can be computed from the over-
lap of proton light-front wavefunctions [84, 85] including contributions from
Fock states with the same parton number n = n′, and states differing by the
presence of an extra qq: n = n′ + 2.

9. The J = 0 Fixed pole: One of the most distinctive features of QCD is the
presence of a J = 0 fixed Regge pole contribution to the Compton ampli-
tude reflecting the fact that the two photons can act quasi-locally on the same
quark [86]. This contribution can be observed in timelike DVCS: pp → γγ∗

from its distinctive kinematic properties: the amplitude from the J = 0 term is
independent of t at fixed s, independent of photon virtuality at fixed s.

10. Time-like Proton Form Factors. Leading-twist PQCD predictions for hard ex-
clusive amplitudes [76] are written in a factorized form as the product of hadron
distribution amplitudes φI(xi, Q) for each hadron I convoluted with the hard
scattering amplitude TH obtained by replacing each hadron with collinear on-
shell quarks with light-front momentum fractions xi = k+

i /P
+. The hadron

distribution amplitudes are obtained by integrating the n−parton valence light-
front wavefunctions:

φ(xi, Q) =
∫ Q

Πn−1
i=1 d

2k⊥i ψval(xi, k⊥). (9)

Thus the distribution amplitudes are Lz = 0 projections of the LF wavefunc-
tion, and the sum of the spin projections of the valence quarks must equal the
Jz of the parent hadron. Higher orbital angular momentum components lead
to power-law suppressed exclusive amplitudes [76, 87]. Since quark masses can
be neglected at leading twist in TH , one has quark helicity conservation, and
thus, finally, hadron-helicity conservation: the sum of initial hadron helicities
equals the sum of final helicities. In particular, since the hadron-helicity violat-
ing Pauli form factor is computed from states with ∆Lz = ±1, PQCD predicts
F2(Q

2)/F1(Q
2) ∼ 1/Q2 [modulo logarithms]. A detailed analysis shows that
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the asymptotic fall-off takes the form F2(Q
2)/F1(Q

2) ∼ log2Q2/Q2 [88]. One
can also construct other models [89] incorporating the leading-twist perturba-
tive QCD prediction which are consistent with the JLab polarization transfer
data [90] for the ratio of proton Pauli and Dirac form factors. This analysis can
also be extended to study the spin structure of scattering amplitudes at large
transverse momentum and other processes which are dependent on the scaling
and orbital angular momentum structure of light-front wavefunctions. Recently,
Afanasev, Carlson, Chen, Vanderhaeghen, and I [91] have shown that the inter-
fering two-photon exchange contribution to elastic electron-proton scattering,
including inelastic intermediate states, can account for the discrepancy between
Rosenbluth and Jefferson Lab spin transfer polarization data [90].

A crucial prediction of models for proton form factors is the relative phase of
the timelike form factors, since this can be measured from the proton single spin
symmetries in e+e− → pp or pp→ ℓℓ [92]. The Zemach radius of the proton is
known to a precision of better than 2% from the comparison of hydrogen and
muonium hyperfine splittings; this constraint needs to be incorporated into any
analysis [93].

The annihilation process pp → ℓ+ℓ− thus provides a primary test of proton
structure. Its angular distribution allows a direct separation of the GE(s) and
GM(s) timelike form factors. Carl Carlson, John Hiller, Dae Sung Hwang and
I [92] have shown that measurements of the proton’s polarization strongly dis-
criminate between the analytic forms of models which fit the proton form factors
in the spacelike region. In particular, the single-spin asymmetry normal to the
scattering plane measures the relative phase difference between the timelike GE

and GM form factors. The dependence on proton polarization in the timelike
region is expected to be large in most models, of the order of several tens of per-
cent. The continuation of the spacelike form factors to the timelike don=main
t = s > 4M2

p is very sensitive to the analytic form of the form factors; in partic-
ular it is very sensitive to the form of the PQCD predictions including the cor-
rections to conformal scaling. The forward-backward ℓ+ℓ− asymmetry measures
the interference of one-photon and two-photon contributions to pp→ ℓ+ℓ−.

11. Tests of Color Transparency. The small transverse size fluctuations of a hadron
wavefunction with a small color dipole moment will have minimal interactions in
a nucleus [94, 37]. Color transparency can be tested in quasi-elastic antiproton-
nucleus reactions such as pA → π+π−(A − 1) where the proton annihilates
in the nucleus leaving a recoiling nucleus with one less proton. According to
color transparency, at large Mπ+π− the small size wavefunction fluctuations
of the incident p and outgoing pions which enter the hard scattering exclusive
pp → π+π− amplitude will not be absorbed in the nucleus so that the ideal
rate is proportional to the number Z of protons in the nucleus. In contrast,
the standard nuclear physics prediction is the number Z1/3 of protons on the
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periphery of the nucleus.

12. Intrinsic Charm [95]. The probability for Fock states of a light hadron such
as the proton to have an extra heavy quark pair decreases as 1/m2

Q in non-
Abelian gauge theory [96, 97]. The relevant matrix element is the cube of
the QCD field strength G3

µν . This is in contrast to abelian gauge theory where
the relevant operator is F 4

µν and the probability of intrinsic heavy leptons in
QED bound state is suppressed as 1/m4

ℓ . The intrinsic Fock state probability is
maximized at minimal off shellness. The maximum probability occurs at xi =
mi

⊥/
∑n

j=1m
j
⊥; i.e., when the constituents have equal rapidity. Thus the heaviest

constituents have the highest momentum fractions and highest x. Intrinsic
charm thus predicts that the charm structure function has support at large xbj

in excess of DGLAP extrapolations [95]; this is in agreement with the EMC
measurements [98].

Intrinsic charm allows charm production to occur close to it’s kinematic thresh-
old [99]. Charm and bottom production near threshold is sensitive to the multi-
quark, gluonic, and hidden-color correlations of hadronic and nuclear wavefunc-
tions in QCD since all of the target’s constituents must act coherently within
the small interaction volume of the heavy quark production subprocess. Al-
though such multi-parton subprocess cross sections are suppressed by powers of
1/m2

Q, they have less phase-space suppression and can dominate the contribu-
tions of the leading-twist single-gluon subprocesses in the threshold regime. In
fact, an anomalous signal was observed at CESR in J/ψ photoproduction near
threshold [100]. Similarly, intrinsic charm predicts anomalously large rates for
open and hidden charm in pp collisions such as pp → ΛCX and pp → J/ψX
even at relatively small antiproton energies. The rate for threshold channels
will be significantly enhanced in nuclear targets.

13. Anomalous Deuteron Reactions and Hidden Color. In general, the six-quark
wavefunction of a deuteron is a mixture of five different color-singlet states [36].
The dominant color configuration at large distances corresponds to the usual
proton-neutron bound state where transverse momenta are of order ~k2 ∼ 2MdǫBE .
However, at small impact space separation, all five Fock color-singlet compo-
nents eventually acquire equal weight, i.e., the deuteron wavefunction evolves
to 80% hidden color. At high Q2 the deuteron form factor is sensitive to wave-
function configurations where all six quarks overlap within an impact separation
b⊥i < O(1/Q). The normalization of the deuteron form factor observed at large
Q2 [101], as well as the presence of two mass scales in the scaling behavior of the
reduced deuteron form factor [102] fd(Q

2) = Fd(Q
2)/F 2(Q2/4), suggests sizable

hidden-color contributions such as | (uud)8C
(ddu)8C

〉 with probability of order
15% in the deuteron wavefunction [103]. See Fig. 1. Perturbative QCD and con-
formal symmetry can also be directly applied to exclusive antiproton-deuteron
reactions, such as the fixed angle scaling s12dσ/dt(pd→ π−p) corresponding to
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14 participating elementary fields. Such hard-scattering nuclear reactions are
sensitive to the minimal six-quark hidden-color Fock states of the deuteron.
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Figure 1: Reduced deuteron form factor testing the scaling predicted by perturbative
QCD and conformal scaling. The data show two regimes: a fast-falling behavior at
small Q2 characteristic of normal nuclear binding, and a hard scattering regime with
monopole fall-off controlled by the scale m2

0 = 0.28 GeV2. The latter contribution
is attributable to non-nucleonic hidden-color components of the deuteron’s six-quark
Fock state. From Ref. [102].

14. Transversity and the Drell-Yan reaction [104]. The production of massive pairs
in anti-proton–proton reactions pp→ ℓ+ℓ−X is the ideal prototype of a hard in-
clusive reaction. In particular, it provides the most direct test of the correlation
between transversely-polarized quarks in a transversely polarized proton—via
the ATT correlation.

15. Single-Spin asymmetries in Drell-Yan Processes [33, 105]. Initial-state inter-
actions between the annihilating antiquark of the p and the spectators of the
target proton will produce a T−odd “Sivers effect” single-spin asymmetry pro-
portional to the correlation ~Sp · ~q × ~p. Here Sp is the spin-vector of the target
proton. The asymmetry is predicted to be equal but opposite in sign to the cor-
responding single-spin asymmetry ~Sp · ~q × ~p′ in semi-inclusive γ∗p → p′X deep
inelastic scattering. The same initial-state interactions which produce single-
spin asymmetries also produce a dramatic cos 2φ correlation of the lepton-pair
plane and the ~q → ~p plane [106].
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16. Diffractive Drell-Yan reactions. The reaction pp→ γ∗p′X, where the target nu-
cleon remains intact and has a rapidity gap with the other final state hadrons,
provides a novel look at the hard pomeron and its origin. The behavior of the
Drell-Yan cross section at large xF probes the x → 1 behavior of the antipro-
ton structure function. The power behavior is predicted by perturbative QCD
counting rules [76, 107] and conformal arguments. In this regime DGLAP evo-
lution is quenched [76] since the annihilating q is far off shell: k2 ∼ −k2

⊥/(1−x).

17. Higher-Twist Processes. Leading-twist perturbative QCD predicts a classic 1 +
cosθ distribution for the lepton angular distribution in the lepton pair rest frame.
The data for pion-induced reactions shows significant deviations especially at
large xF for the lepton pair where higher-twist subprocesses such as πq → γ∗q
are favored [108] and the pion itself enters the hard subprocess. The net result
is a sin2 θ

Q2 contribution which dominates the cross section at xF → 1. In the

case of antiproton beams, higher-twist processes such as (qq)q → γ∗q arise from
diquark correlations can be studied in detail in pp→ γ∗X.

18. Nuclear Antishadowing. The Drell-Yan reaction pA → ℓ+ℓ−X in nuclear tar-
gets provides an important measure of nuclear antishadowing. Recent work
has shown that antishadowing is non-universal; it depends on the flavor of
the individual quark components of the nuclear wavefunction. The shadow-
ing and antishadowing of nuclear structure functions in the Gribov-Glauber
picture is due respectively to the destructive and constructive interference of
amplitudes arising from the multiple-scattering of quarks in the nucleus. The
effective quark-nucleon scattering amplitude includes Pomeron and Odderon
contributions from multi-gluon exchange as well as Reggeon quark-exchange
contributions [38]. The coherence of these multiscattering nuclear processes
leads to shadowing and antishadowing of the electromagnetic nuclear structure
functions in agreement with measurements. Recently, Ivan Schmidt, Jian-Jun
Yang, and I [39] have shown that this picture leads to substantially different
antishadowing for charged and neutral current reactions, thus affecting the ex-
traction of the weak-mixing angle sin2 θW . We find that part of the anomalous
NuTeV result for sin2 θW could be due to the non-universality of nuclear an-
tishadowing for charged and neutral currents. Detailed measurements of the
nuclear dependence of individual quark structure functions, including measure-
ments of the Drell-Yan process in pA reactions, are thus needed to establish the
distinctive phenomenology of shadowing and antishadowing and to make the
NuTeV results definitive.

19. Heavy Quark Asymmetries. The binding of the strange quarks in the nucleon
produces an asymmetry between the strange and antistrange distributions. This
can be tested in the asymmetric production of charmed-strange hadrons. pp→
DsX versus pp → DsX or exclusive p → DsDs because of the coalescence of
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the s or s arising from the
∣∣∣uddss

〉
Fock state of the projectile antiproton.

20. Search for the Odderon. The interference of odderon and pomeron contributions
leads to baryon-antibaryon asymmetries [109]. For example, the asymmetry in
the fractional energy of charm versus anticharm or strange versus antistrange
jets produced in high energy diffractive photoproduction is sensitive to the in-
terference of the Odderon (C = −) and Pomeron (C = +) exchange amplitudes
in QCD.

21. The Exclusive-Inclusive Connection. The Drell-Yan process provides and in-
teresting arena for testing duality in QCD. In the exclusive limit of small MX ,
pp → γ∗X will approach the double-resonant regime: pp → γ∗M∗ where the
massive system M∗ could be a baryon-antibaryon system, a meson pair or even
a single meson.

The following sections in these lectures expand on the physics issues underlying
the above tests.

3 QCD on the Light Front

One of the central problems in particle physics is determining the structure of hadrons
such as the proton and neutron in terms of their fundamental QCD quark and gluon
degrees of freedom. The bound-state structure of hadrons plays a critical role in
virtually every area of particle physics phenomenology. For example, in the case of
the spacelike and timelike nucleon form factors, pion electroproduction ep → e′π+n,
and timelike Compton scattering pp→ γγ, the cross sections depend not only on the
nature of the quark currents, but also on the coupling of the quarks to the initial
and final hadronic states. Exclusive decay amplitudes such as B → K∗γ, processes
which are studied at B factories, depend not only on the underlying weak transitions
between the quark flavors, but also the wavefunctions which describe how the B and
K∗ mesons are assembled in terms of their fundamental quark and gluon constituents.
Unlike the leading-twist structure functions measured in deep inelastic scattering,
such exclusive channels are sensitive to the structure of the hadrons at the amplitude
level and to the coherence between the contributions of the various quark currents
and multi-parton amplitudes.

Light-front Fock state wavefunctions ψn/H(xi, ~k⊥i, λi) encode the bound-state quark
and gluon properties of hadrons, including their spin and flavor correlations, in the
form of universal process- and frame- independent amplitudes. Because the gener-
ators of certain Lorentz boosts are kinematical, knowing the LFWFs in one frame
allows one to obtain it in any other frame. LFWFs underlie virtually all areas of QCD
phenomenology. The hadronic distribution amplitudes which control hard exclusive
processes are computed from the valence Fock state LFWFs. Matrix elements of
space-like local operators for the coupling of photons, gravitons, and the moments of
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Figure 2: Valence contribution to the baryon structure function in QCD1+1, as a
function of the light-cone longitudinal momentum fraction. The gauge group is SU(3),
m is the quark mass, and g is the gauge coupling. (From Ref. [18].)

deep inelastic structure functions all can be expressed as overlaps of light-front wave-
functions with the same number of Fock constituents. Similarly, the exclusive decays
of heavy hadrons such as the B meson are computed from overlaps of LFWFs. The
unintegrated parton distributions and generalized parton distributions measured in
deeply virtual Compton scattering can be constructed from LFWFs. Hadronization
phenomena such as the coalescence mechanism for leading heavy hadron production
are computed from LFWF overlaps. Diffractive jet production provides another phe-
nomenological window into the structure of LFWFs. However, some leading-twist
phenomena such as the diffractive component of deep inelastic scattering, single spin
asymmetries, nuclear shadowing and antishadowing cannot be computed from the
LFWFs of hadrons in isolation.

Formally, the light-front expansion is constructed by quantizing QCD at fixed
light-cone time [25] τ = t + z/c and forming the invariant light-front Hamiltonian:

HQCD
LF = P+P−− ~P 2

⊥ where P± = P 0±P z [20]. The momentum generators P+ and ~P⊥
are kinematical; i.e., they are independent of the interactions. The generator P− =
i d
dτ

generates light-cone time translations, and the eigen-spectrum of the Lorentz

scalar HQCD
LF gives the mass spectrum of the color-singlet hadron states in QCD

together with their respective light-front wavefunctions. For example, the proton
state satisfies HQCD

LF |ψp〉 = M2
p |ψp〉. The expansion of the proton eigensolution

|ψp〉 on the color-singlet B = 1, Q = 1 eigenstates { |n〉} of the free Hamiltonian
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HQCD
LF (g = 0) gives the light-front Fock expansion:

∣∣∣ψp(P
+, ~P⊥)

〉
=
∑

n

n∏

i=1

dxi d
2~k⊥i√

xi 16π3
16π3

× δ

(

1 −
n∑

i=1

xi

)

δ(2)

(
n∑

i=1

~k⊥i

)

× ψn/H(xi, ~k⊥i, λi)
∣∣∣n; xiP

+, xi
~P⊥ + ~k⊥i, λi

〉
.

The light-cone momentum fractions xi = k+
i /P

+ and ~k⊥i represent the relative mo-
mentum coordinates of the QCD constituents. The physical transverse momenta
are ~p⊥i = xi

~P⊥ + ~k⊥i. The λi label the light-cone spin projections Sz of the quarks
and gluons along the quantization direction z. The physical gluon polarization vectors
ǫµ(k, λ = ±1) are specified in light-cone gauge by the conditions k ·ǫ = 0, η ·ǫ = ǫ+ =
0. Light-front quantization in the doubly-transverse light-cone gauge [110, 111] has
a number of advantages, including explicit unitarity, a physical Fock expansion, ex-
act representations of current matrix elements, and the decoupling properties needed
to prove factorization theorems in high momentum transfer inclusive and exclusive
reactions.

The matrix elements of the light-front Hamiltonian are illustrated in Fig. 3. Light-
front four-point instantaneous gluon and quark interactions appear when one elim-
inates the dependent quark and gluon fields using the QCD equation of motion in
light-cone gauge A+ = 0. This is the analog of the Coulomb interactions which appear
in a gauge theory Hamiltonian when quantized in radiation gauge.

The solutions of HQCD
LF |ψp〉 = M2

p |ψp〉 are independent of P+ and ~P⊥; thus

given the eigensolution Fock projections 〈n; xi, ~k⊥i, λi|ψp〉 = ψn(xi, ~k⊥i, λi), the wave-
function of the proton is determined in any frame [76]. In contrast, in equal-time
quantization, a Lorentz boost always mixes dynamically with the interactions, so
that computing a wavefunction in a new frame requires solving a nonperturbative
problem as complicated as the Hamiltonian eigenvalue problem itself. The LFWFs
ψn/H(xi, ~k⊥i, λi) are properties of the hadron itself; they are thus universal and process
independent.

One can also define the light-front Fock expansion using a covariant generalization
of light-front time: τ = x·ω. The four-vector ω, with ω2 = 0, determines the orienta-
tion of the light-front plane. The freedom to choose ω provides an explicitly covariant
formulation of light-front quantization [26]: all observables such as matrix elements
of local current operators, form factors, and cross sections are light-front invariants
and thus must be independent of ωµ. In recent work, Dae Sung Hwang, John Hiller,
Volodya Karmonov, and I [89] have studied the analytic structure of LFWFs using
the explicitly Lorentz-invariant formulation of the front form. Eigensolutions of the
Bethe-Salpeter equation have specific angular momentum as specified by the Pauli-
Lubanski vector. The corresponding LFWF for an n-particle Fock state evaluated at
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Figure 3: Graphical Representation of QCD light-front Hamiltonian interactions in
the Light-Front Fock Space. The figure illustrates the matrix elements between Fock
states from the three-point and four-point interactions of the theory plus the contri-
butions from instantaneous gluon and quark exchange. From Ref. [20].

equal light-front time τ = ω · x can be obtained by integrating the Bethe-Salpeter
solutions over the corresponding relative light-front energies. The resulting LFWFs
ψI

n(xi, k⊥i) are functions of the light-cone momentum fractions xi = ki · ω/p · ω and

the invariant mass squared of the constituents M2
0 = (

∑n
i=1 k

µ
i )2 =

∑n
i=1 [

k2
⊥

+m2

x
]i,

each multiplying spin-vector and polarization tensor invariants which can involve ωµ.
They are eigenstates of the Karmanov–Smirnov kinematic angular momentum oper-
ator [112]. Thus LFWFs satisfy all Lorentz symmetries of the front form, including
boost invariance, and they are proper eigenstates of angular momentum.

In principle, one can solve for the LFWFs directly from the fundamental theory
using methods such as discretized light-front quantization (DLCQ), the transverse
lattice, lattice gauge theory moments, or Bethe–Salpeter techniques. DLCQ has been
remarkably successful in determining the entire spectrum and corresponding LFWFs
in 1+1 field theories, including supersymmetric examples. Reviews of nonperturbative
light-front methods may be found in references [20, 26, 113, 114]. One can also
project the known solutions of the Bethe–Salpeter equation to equal light-front time,
thus producing hadronic light-front Fock wave functions. A potentially important
method is to construct the qq Green’s function using light-front Hamiltonian theory,
with DLCQ boundary conditions and Lippmann-Schwinger resummation. The zeros
of the resulting resolvent projected on states of specific angular momentum Jz can
then generate the meson spectrum and their light-front Fock wavefunctions. The
DLCQ properties and boundary conditions allow a truncation of the Fock space while
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retaining the kinematic boost and Lorentz invariance of light-front quantization. For
a recent review of light-front methods and references, see Ref. [114].

Even without explicit solutions, much is known about the explicit form and struc-
ture of LFWFs. They can be matched to nonrelativistic Schrodinger wavefunctions
at soft scales. LFWFs at large k⊥ and xi → 1 are constrained at high momenta by
arguments based on conformal symmetry, the operator product expansion, or pertur-
bative QCD. The pattern of higher Fock states with extra gluons is given by ladder
relations. The structure of Fock states with nonzero orbital angular momentum is
also constrained.

4 Light-Front Wavefunctions and QCD Phenomenol-

ogy

Given the light-front wavefunctions, one can compute the unintegrated parton dis-
tributions in x and k⊥ which underlie generalized parton distributions for nonzero
skewness. As shown by Diehl, Hwang, and myself [84], one can give a complete rep-
resentation of virtual Compton scattering γ∗p→ γp at large initial photon virtuality
Q2 and small momentum transfer squared t in terms of the light-cone wavefunctions
of the target proton. One can then verify the identities between the skewed parton
distributions H(x, ζ, t) and E(x, ζ, t) which appear in deeply virtual Compton scat-
tering and the corresponding integrands of the Dirac and Pauli form factors F1(t)
and F2(t) and the gravitational form factors Aq(t) and Bq(t) for each quark and anti-
quark constituent. We have illustrated the general formalism for the case of deeply
virtual Compton scattering on the quantum fluctuations of a fermion in quantum
electrodynamics at one loop.

The integrals of the unintegrated parton distributions over transverse momentum
at zero skewness provide the helicity and transversity distributions measurable in po-
larized deep inelastic experiments [76]. For example, the polarized quark distributions
at resolution Λ correspond to

qλq/Λp
(x,Λ) =

×
∑

n,qa

∫ n∏

j=1

dxjd
2k⊥j

∑

λi

|ψ(Λ)
n/H(xi, ~k⊥i, λi)|2

× δ

(

1 −
n∑

i

xi

)

δ(2)

(
n∑

i

~k⊥i

)

δ(x− xq)

× δλa,λq
Θ(Λ2 −M2

n) ,

where the sum is over all quarks qa which match the quantum numbers, light-cone
momentum fraction x, and helicity of the struck quark.

As shown by Raufeisen and myself [115], one can construct a “light-front density
matrix” from the complete set of light-front wavefunctions which is a Lorentz scalar.
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One can also define a light-front partition function ZLF as an outer product of light-
front wavefunctions. The deeply virtual Compton amplitude and generalized parton
distributions can then be computed as the trace Tr[ZLFO], where O is the appro-
priate local operator [115]. This partition function formalism can be extended to
multi-hadronic systems and systems in statistical equilibrium to provide a Lorentz-
invariant description of relativistic thermodynamics [115]. This form can be used
at finite temperature to give a boost invariant formulation of thermodynamics. At
zero temperature the light-front density matrix is directly connected to the Green’s
function for quark propagation in the hadron as well as deeply virtual Compton scat-
tering. In addition, moments of transversity distributions and off-diagonal helicity
convolutions are defined from the density matrix of the light-cone wavefunctions. The
light-front wavefunctions also specify the multi-quark and gluon correlations of the
hadron. For example, the distribution of spectator particles in the final state which
could be measured in the proton fragmentation region in deep inelastic scattering
at an electron-proton collider or in the Drell-Yan process pp → ℓ+ℓ−X which can
be studied in antiproton collisions at GSI are in principle encoded in the light-front
wavefunctions.

Matrix elements of local operators such as spacelike proton form factors can be
computed simply from the overlap integrals of light front wave functions in analogy
to nonrelativistic Schrödinger theory. Thus given the ψ

(Λ)
n/H , one can construct any

spacelike electromagnetic, electroweak, or gravitational form factor or local opera-
tor product matrix element of a composite or elementary system from the diagonal
overlap of the LFWFs [116]. Exclusive semi-leptonic B-decay amplitudes involving
timelike currents such as B → Aℓν can also be evaluated exactly in the light-front
formalism [117]. In this case, the timelike decay matrix elements require the compu-
tation of both the diagonal matrix element n→ n where parton number is conserved
and the off-diagonal n+ 1 → n− 1 convolution such that the current operator anni-
hilates a qq′ pair in the initial B wavefunction. This term is a consequence of the fact
that the time-like decay q2 = (pℓ + pν)

2 > 0 requires a positive light-cone momentum
fraction q+ > 0. Conversely for space-like currents, one can choose q+ = 0, as in the
Drell-Yan-West representation of the space-like electromagnetic form factors.

One can also compute the generalized parton distributions which appear the
deeply virtual Compton amplitude (DVCS) in the handbag approximation from over-
lap of light-front wavefunctions [84, 85]. An interesting aspect of DVCS is the pre-
diction from QCD of a J = 0 fixed Regge pole contribution to the real part of the
Compton amplitude which has constant energy s0F (t) dependence at any momen-
tum transfer t or photon virtuality [118, 119]. This unique contribution is due to the
quasi-local coupling of two photons to the quark current coming from the quark Z-
graph in time-ordered perturbation theory or, equivalently, the instantaneous quark
propagator arising in light-front quantization.

The relationship of QCD processes to the hadron LFWFs is illustrated in Figs. 4
and 5.
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Other applications include two-photon exclusive reactions, and diffractive dissoci-
ation into jets. The universal light-front wave functions and distribution amplitudes
control hard exclusive processes such as form factors, deeply virtual Compton scat-
tering, high momentum transfer photoproduction, and two-photon processes.

The light-front Fock representation thus provides an exact formulation of current
matrix elements of local and bi-local operators. In contrast, in equal-time Hamiltonian
theory, one must evaluate connected time-ordered diagrams where the gauge particle
or graviton couples to particles associated with vacuum fluctuations. Thus even if
one knows the equal-time wavefunction for the initial and final hadron, one cannot
determine the current matrix elements. In the case of the covariant Bethe-Salpeter
formalism, the evaluation of the matrix element of the current requires the calculation
of an infinite number of irreducible diagram contributions. One can also prove that the
anomalous gravitomagnetic moment B(0) vanishes for any composite system [120].
This property follows directly from the Lorentz boost properties of the light-front
Fock representation and holds separately for each Fock state component.

One of the central issues in the analysis of fundamental hadron structure is the
presence of non-zero orbital angular momentum in the bound-state wave functions.
The evidence for a “spin crisis” in the Ellis-Jaffe sum rule signals a significant orbital
contribution in the proton wave function [121, 122]. The Pauli form factor of nucleons
is computed from the overlap of LFWFs differing by one unit of orbital angular mo-
mentum ∆Lz = ±1. Thus the fact that the anomalous moment of the proton is non-
zero requires nonzero orbital angular momentum in the proton wavefunction [116].
In the light-front method, orbital angular momentum is treated explicitly; it includes
the orbital contributions induced by relativistic effects, such as the spin-orbit effects
normally associated with the conventional Dirac spinors.

5 Perturbative QCD and Exclusive Processes

There are a number of fundamental tests of QCD based on exclusive reactions. There
has been considerable progress analyzing exclusive and diffractive reactions at large
momentum transfer from first principles in QCD. Rigorous statements can be made on
the basis of asymptotic freedom and factorization theorems which separate the under-
lying hard quark and gluon subprocess amplitude from the nonperturbative physics
of the hadronic wavefunctions. The leading-power contribution to exclusive hadronic
amplitudes such as quarkonium decay, heavy hadron decay, and scattering amplitudes
where hadrons are scattered with large momentum transfer can often be factorized as
a convolution of distribution amplitudes φH(xi,Λ) and hard-scattering quark/gluon
scattering amplitudes TH integrated over the light-cone momentum fractions of the
valence quarks [76]:

MHadron =
∫ ∏

φ
(Λ)
H (xi, λi)T

(Λ)
H dxi . (10)
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Figure 4: Representation of QCD hadronic processes in the light-cone Fock expan-
sion. (a) The valence uud and higher Fock uudg contributions to the light-cone Fock
expansion for the proton. (b) The distribution amplitude φ(x,Q) of a meson expressed
as an integral over its valence light-cone wavefunction restricted to qq invariant mass
less than Q. (c) Representation of deep inelastic scattering and the quark distribu-
tions q(x,Q) as probabilistic measures of the light-cone Fock wavefunctions. The sum
is over the Fock states with invariant mass less than Q. (d) Exact representation of
spacelike form factors of the proton in the light-cone Fock basis. The sum is over all
Fock components. At large momentum transfer the leading-twist contribution fac-
torizes as the product of the hard scattering amplitude TH for the scattering of the
valence quarks collinear with the initial to final direction convoluted with the proton
distribution amplitude. (e) Leading-twist factorization of the Compton amplitude at
large momentum transfer.
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Figure 5: (f) Representation of deeply virtual Compton scattering in the light-
cone Fock expansion at leading twist. Both diagonal n → n and off-diagonal n +
2 → n contributions are required. (g) Diffractive vector meson production at large
photon virtuality Q2 and longitudinal polarization. The high energy behavior involves
two gluons in the t channel coupling to the compact color dipole structure of the
upper vertex. The bound-state structure of the vector meson enters through its
distribution amplitude. (h) Exact representation of the weak semileptonic decays
of heavy hadrons in the light-cone Fock expansion. Both diagonal n → n and off-
diagonal pair annihilation n + 2 → n contributions are required.
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Here T
(Λ)
H is the underlying quark-gluon subprocess scattering amplitude in which

each incident and final hadron is replaced by valence quarks with collinear momenta
k+

i = xip
+
H , ~k⊥i = xi~p⊥H . The invariant mass of all intermediate states in TH is

evaluated above the separation scale M2
n > Λ2. The essential part of the hadronic

wavefunction is the distribution amplitude [76], defined as the integral over transverse
momenta of the valence (lowest particle number) Fock wavefunction; e.g. for the pion

φπ(xi, Q) ≡
∫
d2k⊥ ψ

(Q)
qq/π(xi, ~k⊥i, λ) (11)

where the separation scale Λ can be taken to be order of the characteristic momentum
transfer Q in the process. It should be emphasized that the hard scattering amplitude
TH is evaluated in the QCD perturbative domain where the propagator virtualities
are above the separation scale.

The leading power fall-off of the hard scattering amplitude as given by dimensional
counting rules follows from the nominal scaling of the hard-scattering amplitude:
TH ∼ 1/Qn−4, where n is the total number of fields (quarks, leptons, or gauge fields)
participating in the hard scattering [44, 75]. Thus the reaction is dominated by
subprocesses and Fock states involving the minimum number of interacting fields. In
the case of 2 → 2 scattering processes, this implies

dσ

dt
(AB → CD) = FAB→CD(t/s)/sn−2 (12)

where n = NA +NB +NC + ND and nH is the minimum number of constituents of
H .

In the case of form factors, the dominant helicity conserving amplitude has the
nominal power-law falloff FH(t) ∼ (1/t)nH−1, The complete predictions from PQCD
modify the nominal scaling by logarithms from the running coupling and the evolution
of the distribution amplitudes. In some cases, such as large angle pp → pp scatter-
ing, there can be “pinch” contributions [123] when the scattering can occur from a
sequence of independent near-on shell quark-quark scattering amplitudes at the same
CM angle. After inclusion of Sudakov suppression form factors, these contributions
also have a scaling behavior close to that predicted by constituent counting.

The constituent counting rules were originally derived in 1973 [44, 75] before the
development of QCD in anticipation that the underlying theory of hadron physics
would be renormalizable and close to a conformal theory. The factorized structure of
hard exclusive amplitudes in terms of a convolution of valence hadron wavefunctions
times a hard-scattering quark scattering amplitude was also proposed [44]. Upon the
discovery of the asymptotic freedom in QCD, there was a systematical development
of the theory of hard exclusive reactions, including factorization theorems, counting
rules, and evolution equations for the hadronic distribution amplitudes [124, 125, 52,
126].

In a remarkable recent development, Polchinski and Strassler have shown how one
can map features of gravitational theories in higher dimensions (AdS5) to phenomeno-
logical properties of physical QCD in ordinary 3+1 space-time [12]. The AdS/CFT
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correspondence connecting superstring theory to superconformal gauge theory has
important implications for hadron phenomenology in the conformal limit, including
an all-orders demonstration of counting rules for hard exclusive processes as well as
determining essential aspects of hadronic light-front wavefunctions.

The distribution amplitudes which control leading-twist exclusive amplitudes at
high momentum transfer can be related to the gauge-invariant Bethe-Salpeter wave-
function at equal light-cone time τ = x+. The logarithmic evolution of the hadron
distribution amplitudes φH(xi, Q) with respect to the resolution scale Q can be de-
rived from the perturbatively-computable tail of the valence light-cone wavefunction
in the high transverse momentum regime. The DGLAP evolution of quark and gluon
distributions can also be derived in an analogous way by computing the variation of
the Fock expansion with respect to the separation scale. Other key features of the
perturbative QCD analyses are: (a) evolution equations for distribution amplitudes
which incorporate the operator product expansion, renormalization group invariance,
and conformal symmetry [76, 48, 127, 128, 59]; (b) hadron helicity conservation which
follows from the underlying chiral structure of QCD [79]; (c) color transparency, which
eliminates corrections to hard exclusive amplitudes from initial and final state inter-
actions at leading power and reflects the underlying gauge theoretic basis for the
strong interactions [37] and (d) hidden color degrees of freedom in nuclear wave-
functions, which reflect the color structure of hadron and nuclear wavefunctions [36].
There have also been recent advances eliminating renormalization scale ambiguities
in hard-scattering amplitudes via commensurate scale relations [54] which connect
the couplings entering exclusive amplitudes to the αV coupling which controls the
QCD heavy quark potential.

Exclusive processes such as pp → pp, pp → K+K− and pp → γγ provide a
unique window for viewing QCD processes and hadron dynamics at the amplitude
level [81, 53]. New tests of theory and comprehensive measurements of hard exclusive
amplitudes can also be carried out for electroproduction at Jefferson Laboratory and
in two-photon collisions at CLEO, Belle, and BaBar [82]. Hadronic exclusive pro-
cesses are closely related to exclusive hadronic B decays, processes which are essen-
tial for determining the CKM phases and the physics of CP violation. The universal
light-front wavefunctions which control hard exclusive processes such as form factors,
deeply virtual Compton scattering, high momentum transfer photoproduction, and
two-photon processes, are also required for computing exclusive heavy hadron de-
cays [129, 130, 131, 132], such as B → Kπ, B → ℓνπ, and B → Kpp [133]. The same
physics issues, including color transparency, hadron helicity rules, and the question
of dominance of leading-twist perturbative QCD mechanisms enter in both realms of
physics.

25



6 The Pion Form Factor

The pion spacelike form factor provides an important illustration of the perturbative
QCD formalism. The proof of factorization begins with the exact Drell-Yan-West
representation [134, 135, 116] of the current in terms of the light-cone Fock wavefunc-
tions (see Section 7.) The integration over the momenta of the constituents of each
wavefunction can be divided into two domains M2

n < Λ2 and M2
n > Λ2, where M2

n

is the invariant mass of the n-particle state. Λ plays the role of a separation scale. In
practice, it can be taken to be of order of the momentum transfer.

Consider the contribution of the two-particle Fock state. The argument of the final
state pion wavefunction is k⊥ + (1 − x)q⊥. First take k⊥ small. At high momentum
transfer where

M2 ∼ (1 − x)2q2
⊥

x(1 − x)
=
Q2(1 − x)

x
> Λ2, (13)

one can iterate the equation of motion for the valence light-front wavefunction using
the one gluon exchange kernel. Including all of the hard scattering domains, one can
organize the result into the factorized form:

Fπ(Q2) =
∫ 1

0
dx
∫ 1

0
dyφπ(y,Λ)TH(x, y,Q2)φπ(x,Λ), (14)

where TH is the hard-scattering amplitude γ∗(qq) → (qq) for the production of the
valence quarks nearly collinear with each meson, and φM(x,Λ) is the distribution
amplitude for finding the valence q and q with light-cone fractions of the meson’s
momentum, integrated over invariant mass up to Λ. The process independent distri-
bution amplitudes contain the soft physics intrinsic to the nonperturbative structure

of the hadrons. Note that TH is non-zero only if (1−x)Q2

x
> Λ2 and (1−y)Q2

y
> Λ2. In this

hard-scattering domain, the transverse momenta in the formula for TH can be ignored
at leading power, so that the structure of the process has the form of hard scattering

on collinear quark and gluon constituents: TH(x, y,Q2) = 16πCF αs(Q∗2)
(1−x)(1−y)Q2 (1 + O(αs))

and thus [124, 125, 52, 76, 126, 136, 137, 138, 139]

Fπ(Q2) =
16πCFαs(Q

∗2)

Q2

∫ x̂

0
dx
φπ(x,Λ)

(1 − x)

∫ ŷ

0
dy
φπ(y,Λ)

(1 − y)
, (15)

to leading order in αs(Q
∗2) and leading power in 1/Q. Here CF = 4/3 and Q∗ can be

taken as the BLM scale [140]. The endpoint regions of integration 1−x < Λ2

Q2 = 1− x̂
and 1 − y < Λ2

Q2 = 1 − ŷ are to be explicitly excluded in the leading-twist formula.
However, since the integrals over x and y are convergent, one can formally extend the
integration range to 0 < x < 1 and 0 < y < 1 with an error of higher twist. This is
only done for convenience; the actual domain only encompasses the off-shell regime.
The contribution from the endpoint regions of integration, x ∼ 1 and y ∼ 1, are
power-law and Sudakov suppressed and thus contribute corrections at higher order
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in 1/Q [125, 52, 76]. The contributions from non-valence Fock states and corrections
from fixed transverse momentum entering the hard subprocess amplitude are higher
twist, i.e., power-law suppressed. Loop corrections involving hard momenta give
next-to-leading-order (NLO) corrections in αs.

It is sometimes assumed that higher twist terms in the LC wave function, such
as those with Lz 6= 0, have flat distributions at the x → 0, 1 endpoints. This is
difficult to justify since it would correspond to bound state wavefunctions which
fall-off in transverse momentum but have no fall-off at large kz. After evolution to
Q2 → ∞, higher twist distributions can evolve eventually to constant behavior at
x = 0, 1; however, the wavefunctions are in practice only being probed at moderate
scales. In fact, if the higher twist terms are evaluated in the soft domain, then there
is no evolution at all. A recent analysis by Beneke [141] indicates that the 1/Q4

contribution to the pion form factor is only logarithmically enhanced even if the
twist-3 term is flat at the endpoints. It is also possible that contributions from the
twist three qqg light-front wavefunctions may well cancel even this enhancement.

Thus perturbative QCD can unambiguously predict the leading-twist behavior
of exclusive amplitudes. These contributions only involve the truncated integration
domain of x and k⊥ momenta where the quark and gluon propagators and couplings
are perturbative; by definition the soft regime is excluded. The central question is
then whether the PQCD leading-twist prediction can account for the observed lead-
ing power-law fall-off of the form factors and other exclusive processes. Assuming the
pion distribution amplitude is close to its asymptotic form, one can predict the nor-
malization of exclusive amplitudes such as the spacelike pion form factor Q2Fπ(Q2).
Next-to-leading order predictions are available which incorporate higher order cor-
rections to the pion distribution amplitude as well as the hard scattering ampli-
tude [127, 142, 143, 144]. The natural renormalization scheme for the QCD coupling
in hard exclusive processes is αV (Q), the effective charge defined from the scatter-
ing of two infinitely-heavy quark test charges. Assuming αV (Q∗) ≃ 0.4 at the BLM
scale Q∗, the QCD LO prediction appears to be smaller by approximately a factor
of 2 compared to the presently available data extracted from pion electroproduction
experiments [140]. However, the extrapolation from spacelike t to the pion pole in
electroproduction may be unreliable in the same sense that lattice gauge theory ex-
trapolations to m2

π → 0 are known to be nonanalytic. Thus it is not clear that there
is an actual discrepancy between perturbative QCD and experiment. It would be
interesting to develop predictions for the transition form factor Fqq→π(t, q2) which is
in effect what is measured in electroproduction.

It is interesting to compare the calculation of a meson form factor in QCD with
the calculation of the form factor of a bound state in QED. The analog to a soft
wavefunction is the Schrödinger-Coulomb solution ψ1s(~k) ∝ (1+ ~p2/(αmred)

2)−2, and
the full wavefunction, which incorporates transversely polarized photon exchange,
differs by a factor (1+ ~p2/m2

red). Thus the leading-twist dominance of form factors in
QED occurs at relativistic scales Q2 > m2

red [53].
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7 Perturbative QCD Calculation of Baryon Form

Factors

The baryon form factor at large momentum transfer provides another important
example of the application of perturbative QCD to exclusive processes. Away from
possible special points in the xi integrations (which are suppressed by Sudakov form
factors) baryon form factors can be written to leading order in 1/Q2 as a convolution of
the connected hard-scattering amplitude TH with the baryon distribution amplitudes.
An example of a perturbative QCD contribution to F2 is illustrated in Fig. 6 The
Q2-evolution of the baryon distribution amplitude can be derived from the operator
product expansion of three quark fields or from the gluon exchange kernel. Taking
into account the evolution of the baryon distribution amplitude, the nucleon magnetic
form factors at large Q2, has the form [76, 52, 79]

GM(Q2) → α2
s(Q

2)

Q4

∑

n,m

bnm

(

log
Q2

Λ2

)γB
n +γB

n
[

1 + O
(

αs(Q
2),

m2

Q2

)]

. (16)

where the γB
n are computable anomalous dimensions [145] of the baryon three-quark

wave function at short distance, and the bmn are determined from the value of the
distribution amplitude φB(x,Q2

0) at a given point Q2
0 and the normalization of TH .

Asymptotically, the dominant term has the minimum anomalous dimension. The
contribution from the endpoint regions of integration, x ∼ 1 and y ∼ 1, at finite k⊥ is
Sudakov suppressed [125, 52, 76]; however, the endpoint region may play a significant
role in phenomenology.

P x3P+k3x2P+k2x1P+k1 P 0y3P 0+k03y2P 0+k02y1P 0+k01
Figure 6: A typical leading QCD diagram contributing to the nucleon form factors.
From Ref. [88] .

The proton form factor appears to scale at Q2 > 5 GeV2 according to the PQCD
predictions. See Fig. 7. Nucleon form factors are approximately described phe-
nomenologically by the well-known dipole form GM(Q2) ≃ 1/(1 +Q2/0.71 GeV2)2

which behaves asymptotically as GM(Q2) ≃ (1/Q4)(1 − 1.42 GeV2/Q2 + · · ·) . This
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suggests that the corrections to leading twist in the proton form factor and similar
exclusive processes involving protons become important in the range Q2 < 1.4 GeV2.
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Figure 7: Predictions for the normalization and sign of the proton form factor at
high Q2 using perturbative QCD factorization and QCD sum rule predictions for
the proton distribution amplitude (From Ji et al. [146]) The curve labelled BL has
arbitrary normalization and incorporates the fall-off of two powers of the running
coupling. The dotted line is the QCD sum rule prediction of given by Chernyak and
Zhitnitsky [147, 148]. The results are similar for the model distribution amplitudes
of King and Sachrajda [153], and Gari and Stefanis [154].

The shape of the distribution amplitude controls the normalization of the leading-
twist prediction for the proton form factor. If one assumes that the proton distri-
bution amplitude has the asymptotic form: φN = Cx1x2x3, then the convolution
with the leading order form for TH gives zero! If one takes a non-relativistic form
peaked at xi = 1/3, the sign is negative, requiring a crossing point zero in the form
factor at some finite Q2. The broad asymmetric distribution amplitude advocated by
Chernyak and Zhitnitsky [147, 148] gives a more satisfactory result. If one assumes
a constant value of αs = 0.3, and fN = 5.3 × 10−3GeV2, the leading order prediction
is below the data by a factor of ≈ 3. However, since the form factor is proportional
to α2

sf
2
N , one can obtain agreement with experiment by a simple renormalization of

the parameters. For example, if one uses the central value of Ioffe’s determination
fN = 8 × 10−3GeV2, then good agreement is obtained [149]. The normalization of
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the proton distribution amplitude is also important for estimating the proton decay
rate [150]. The most recent lattice results [151] suggest a significantly larger nor-
malization for the required proton matrix elements, 3 to 5 times larger than earlier
phenomenological estimates. One can also use PQCD to predict ratios of various
baryon and isobar form factors assuming isospin or SU(3)-flavor symmetry for the
basic wave function structure. Results for the neutral weak and charged weak form
factors assuming standard SU(2) × U(1) symmetry can also be derived [152].

A useful technique for obtaining the solutions to the baryon evolution equations is
to construct completely antisymmetric representations as a polynomial orthonormal
basis for the distribution amplitude of multi-quark bound states. In this way. one
obtains a distinctive classification of nucleon (N) and Delta (∆) wave functions and
the corresponding Q2 dependence which discriminates N and ∆ form factors. Braun
and collaborators have shown how one can use conformal symmetry to classify the
eigensolutions of the baryon distribution amplitude [59]. They identify a new ‘hidden’
quantum number which distinguishes components in the λ = 3/2 distribution ampli-
tudes with different scale dependence. They are able to find analytic solutions of the
evolution equation for λ = 3/2 and λ = 1/2 baryons where the two lowest anomalous
dimensions for the λ = 1/2 operators (one for each parity) are separated from the
rest of the spectrum by a finite ‘mass gap’. These special states can be interpreted
as baryons with scalar diquarks. Their results may support Carlson’s solution [155]
to the puzzle that the proton to ∆ form factor falls faster [156] than other p → N∗

amplitudes if the ∆ distribution amplitude has a symmetric x1x2x3 form.
In a remarkable development, Pobylitsa et al. [157] have shown how to compute

transition form factors linking the proton to nucleon-pion states which have minimal
invariant mass W . A new soft pion theorem for high momentum transfers allows one
to compute the three quark distribution amplitudes for the near threshold pion states
from a chiral rotation. The new soft pion results are in a good agreement with the
SLAC electroproduction data for W 2 < 1.4 GeV2 and 7 < Q2 < 30.7 GeV2. This
approach can be tested in antiproton collisions in reactions such as pp→ ppπ0 where
the proton and pion have small invariant mass.

8 Timelike Proton Form Factors

The form factors of hadrons as measured in both the spacelike and timelike do-
mains provide fundamental information on the structure and internal dynamics of
hadrons. Recent measurements [158] of the electron-to-proton polarization transfer
in −→e − p→ e− −→p scattering at Jefferson Laboratory show that the ratio of Sachs form
factors [159] Gp

E(q2)/Gp
M(q2) is monotonically decreasing with increasing Q2 = −q2,

in strong contradiction with the GE/GM scaling determined by the traditional Rosen-
bluth separation method. Recently, Afanasev, Carlson, Chen, Vanderhaeghen, and
I [91] have shown that the interfering two-photon exchange contribution to elastic
electron-proton scattering, including inelastic intermediate states, can account for
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the discrepancy between Rosenbluth and Jefferson Lab spin transfer polarization
data [90]. The Rosenbluth method thus in fact is not reliable because of its sen-
sitivity to the two-photon exchange amplitudes [160, 161]. The polarization transfer
method [158, 162] is relatively insensitive to such corrections.

The same data which indicate that GE for protons falls faster than GM at large
spacelike Q2 require in turn that F2/F1 falls more slowly than 1/Q2. The conventional
expectation from dimensional counting rules [44] and perturbative QCD [125] is that
the Dirac form factor F1 should fall with a nominal power 1/Q4, and the ratio of
the Pauli and Dirac form factors, F2/F1, should fall like 1/Q2, at high momentum
transfers. The Dirac form factor agrees with this expectation in the range Q2 from
a few GeV2 to the data limit of 31 GeV2. However, the Pauli/Dirac ratio is not
observed to fall with the nominal expected power, and the experimenters themselves
have noted that the data is well fit by F2/F1 ∝ 1/Q in the momentum transfer range
2 to 5.6 GeV2.

The new Jefferson Laboratory results make it critical to carefully identify and
separate the timelike GE and GM form factors by measuring the center-of-mass an-
gular distribution and by measuring the polarization of the proton in e+e− → pp or
pp → ℓ+ℓ− reactions. The advent of high luminosity e+e− colliders at Beijing, Cor-
nell, and Frascati provide the opportunity to make such measurements, both directly
and via radiative return. The new GSI antiproton facility with a polarized target will
make measurements of the single spin-dependence of pp→ ℓ+ℓ− feasible.

Although the spacelike form factors of a stable hadron are real, the timelike form
factors have a phase structure reflecting the final-state interactions of the outgoing
hadrons. In general, form factors are analytic functions Fi(q

2) with a discontinuity for
timelike momentum above the physical threshold q2 > 4M2. The analytic structure
and phases of the form factors in the timelike regime are thus connected by dispersion
relations to the spacelike regime [163, 164, 165]. The analytic form and phases of
the timelike amplitudes are also sensitive to the resonances in the unphysical region
0 < q2 < 4M2 below the physical threshold [163] in the JPC = 1−− channel, including
gluonium states and di-baryon structures.

At very large center-of-mass energies, perturbative QCD factorization predicts
diminished final interactions in e+e− → HH, since the hadrons are initially produced
with small color dipole moments. This principle of QCD color transparency [166] is
also an essential feature [167] of hard exclusive B decays [168, 130], and thus needs
to be tested experimentally.

There have been a number of explanations and theoretically motivated fits of
the F2/F1 data. Belitsky, Ji, and Yuan [169] have shown that factors of log(Q2)
arise from a careful QCD analysis of the form factors. The perturbative QCD form
Q2F2/F1 ∼ log2Q2, which has logarithmic factors multiplying the nominal power-law
behavior, fits the large-Q2 spacelike data well. See Fig. 8. Others [170, 171] claim
to find mechanisms that modify the traditionally expected power-law behavior with
fractional powers of Q2, and they also give fits which are in accord with the data in

31



the experimental range. Asymptotic behaviors of the ratio F2/F1 for general light-
front wave functions are investigated in [89]. Each of the model forms predicts a
specific fall-off and phase structure of the form factors from s ↔ t crossing to the
timelike domain. A fit with the dipole polynomial or nominal dimensional counting
rule behavior would predict no phases in the timelike regime.
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Figure 8: JLab data plotted in terms of the leading PQCD scaling. The lower,
middle, and upper data points correspond to Λ = 200, 300, 400, respectively. From
Ref. [88].

9 Single-Spin Asymmetry and the Phase of Time-

like Form Factors

As noted by Dubnickova, Dubnicka, and Rekalo, and by Rock [172], the existence
of the T−odd single-spin asymmetry normal to the scattering plane in baryon pair
production e−e+ → BB requires a nonzero phase difference between the GE and GM

form factors. The phase of the ratio of form factors GE/GM of spin-1/2 baryons in
the timelike region can thus be determined from measurements of the polarization
of one of the produced baryons. As discussed below, Carlson, Hiller, Hwang and I
have shown that measurements of the proton polarization in e+e− → pp strongly
discriminate between the analytic forms of models which have been suggested to fit
the proton GE/GM data in the spacelike region [92].

The center-of-mass angular distribution provides the analog of the Rosenbluth
method for measuring the magnitudes of various helicity amplitudes. The differential
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cross section for e−e+ → BB when B is a spin-1/2 baryon is given in the center-of-
mass frame by

dσ

dΩ
=
α2β

4q2
D , (17)

where β =
√

1 − 4m2
B/q

2 and D is given by

D = |GM |2
(
1 + cos2 θ

)
+

1

τ
|GE|2 sin2 θ ; (18)

where

GM = F1 + F2 ,

GE = F1 + τF2 , (19)

and τ ≡ q2/4m2
B > 1.

The complex phases of the form factors in the timelike region make it possible for
a single outgoing baryon to be polarized in e−e+ → BB even without polarization in
the initial state. The corresponding effect in the initial state produces a polarization
correlation in pp → ℓ+ℓ−. This correlation can be measured at GSI if the target or
beam baryon is polarized.

There are three polarization observables, corresponding to polarizations in three
directions, called longitudinal, sideways, and normal but often denoted z, x, and y,
respectively. Longitudinal (z) when discussing the final state means parallel to the
direction of the outgoing or in going baryon. Sideways (x) means perpendicular to
the direction of the baryon but in the scattering plane. Normal (y) means normal

to the scattering plane, in the direction of ~k × ~p where ~k is the electron momentum
and ~p is the baryon momentum, with x, y, and z forming a right-handed coordinate
system. The polarization Py does not require polarization of a lepton and is [172]

Py =
sin 2θ ImG∗

EGM

D
√
τ

=
(τ − 1) sin 2θ ImF ∗

2F1

D
√
τ

. (20)

The other two polarizations require measurement of the lepton polarization and are
discussed in detail in Ref. [92]. Any model which fits the spacelike form factor data
with an analytic function can be continued to the timelike region. Spacelike form
factors are usually written in terms of Q2 = −q2. The correct relation for analytic
continuation can be obtained by examining denominators in loop calculations in per-
turbation theory. The connection is Q2 → q2e−iπ, or

lnQ2 = ln(−q2) → ln q2 − iπ . (21)

If the spacelike F2/F1 is fit by a rational function of Q2, then the form factors will
be relatively real in the timelike region also. However, one in general gets a complex
result from the continuation.
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More sophisticated dispersion relation based continuations could give more reliable
results, if there is data also in the timelike region to pin down the magnitudes there.
So far, this is possible for the magnetic form factor alone [163], but not for both form
factors.
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Figure 9: Predicted polarization Py in the timelike region for selected form factor fits
described in the text. The plot is for θ = 45◦. The four curves are for an F2/F1 ∝ 1/Q
fit; the (log2Q2)/Q2 fit of Belitsky et al. [88]; an improved (log2Q2)/Q2 fit; and a fit
from Iachello et al. [173].

The expression for polarization Py, Eq. (20), leads to results shown in Fig. 9. The
polarizations are shown for four different fits to the spacelike data as referenced in
the figure. The value of Py should be the same for e+e− → pp and pp → ℓ+ℓ− up
to an overall sign. The predicted polarizations are not small. Note that a purely
polynomial fit to the spacelike data gives zero Py. The normal polarization Py is
a single-spin asymmetry and requires a phase difference between GE and GM . It
is an example of how time-reversal-odd observables can be nonzero if final-state or
initial-state interactions give interfering amplitudes different phases. Its analog in the
spacelike case is zero.
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10 Compton Scattering

Compton scattering is a key test of the perturbative QCD approach [174, 175, 83].
A detailed recalculation of the helicity amplitudes and differential cross section for
proton Compton scattering at fixed angle has been carried out recently by Brooks
and Dixon [83] at leading-twist and at leading order in αs. They use contour deforma-
tions to evaluate the singular integrals in the light-cone momentum fractions arising
from pinch contributions. The shapes and scaling behavior predicted by perturbative
QCD agree well with the existing data [176]. In order to reduce uncertainties asso-
ciated with αs and the three-quark wave function normalization, Brooks and Dixon
have normalized the Compton cross section using the proton elastic form factor. The
theoretical predictions for the ratio of Compton scattering to electron-proton scatter-
ing is about an order of magnitude below existing experimental data. However, this
discrepancy of a factor of 3 in the relative normalization of the amplitudes could be
attributed to the fact that the number of diagrams contributing to the Compton am-
plitude at next-to-leading order (α3

s) is much larger in Compton scattering compared
to the proton form factor.

The Compton amplitude is predicted to have a real Regge contribution [118, 119]

M(γp → γ′p′) = −2ǫ · ǫ′
∑

q

e2qF0(t) (22)

which is constant in energy for any t. Thus unlike ordinary Regge exchange in which
the Regge power varies with t, the J = 0 term is independent of t as well photon
virtualities q2

1 , q
2
2 at fixed t. The spin-zero form factor F q

0 (t) is the 1/xq matrix element
of the proton

F q
0 (t) =

〈

p′
∣∣∣∣∣

1

xq

∣∣∣∣∣ p

〉

(23)

evaluated at spacelike momentum transfer t = (p− p′)2. This C = + form factor is a
new object: it is relevant to the non-spin-flip Higgs coupling to the proton. At large t,
it falls as ∼ 1/t2. A similar Pauli-like contribution also enters the spin-flip Compton
amplitude. This contribution can be observed in timelike DVCS: pp → γγ∗ from its
distinctive kinematic properties: the amplitude from the J = 0 term is independent
of t at fixed s, independent of photon virtuality at fixed s.

In the case of QED with scalar leptons, the fixed-pole contribution to the Compton
amplitude is due to the 4-point seagull interaction. In QCD it arises from the quark
Z-graphs; in the LF-quantized theory, it comes from the quasi-local instantaneous
quark exchange interaction for γq → γq. It is analogous to Thompson scattering on
the electrons of an atom:

M(γA → γ′A′) = −2
∑

e2
MA

me

ǫ · ǫ′. (24)

In the case of hadrons in QCD
〈

1
xq

〉
plays the role of MA

me.
The moment

〈
1
xq

〉
is partic-

ularly interesting since, using the Feynman-Hellmann theorem at t = 0, it is precisely
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the expression for the change in proton mass in the light-cone kinetic energy as one
varies a given quark mass [177]:

∂M2
p

∂m2
q

=

〈
1

xq

〉

. (25)

The J = 0 contribution can be isolated in various ways. Damashek and Gilman
found a signal in forward high energy Compton scattering using analyticity and the
optical theorem [178]. They found that the phenomenological value for the J = 0 term
in the forward Compton amplitude was surprisingly close to the value

∑
q e

2
qF

q
0 (t) = 1,

the same result that one has from Thompson scattering on an elementary proton. Its
role in large t real Compton scattering was studied in Ref. [118].

The J = 0 term also plays an important role in recent work [91] correcting Rosen-
bluth from two-photon exchange because it has a real phase and a π2 enhancement.

A debate has continued on whether processes such as the pion and proton form
factors and elastic Compton scattering γp→ γp might be dominated by higher twist
mechanisms until very large momentum transfers [179, 180, 181, 182, 183]. For ex-
ample, if one assumes that the light-cone wavefunction of the pion has the form

ψsoft(x, k⊥) = A exp
(
−b k2

⊥

x(1−x)

)
, then the Feynman endpoint contribution to the over-

lap integral at small k⊥ and x ≃ 1 will dominate the form factor compared to the
hard-scattering contribution until very large Q2. However, this form for ψsoft(x, k⊥)
does not fall-off at all for k⊥ = 0 and kz → −∞. A soft QCD wavefunction would
be expected to be exponentially suppressed in this regime, as in the BHL model

ψsoft
n (xi, k⊥i) = A exp

(
−b ∑n

i [
~k2
⊥

+m2

x
]i

)
[184]. The endpoint contributions are also

suppressed by a QCD Sudakov form factor [185], reflecting the fact that a near-on-
shell quark must radiate if it absorbs large momentum. If the endpoint contribution
dominates proton Compton scattering, then both photons will interact on the same
quark line in a local fashion and the amplitude is real, in strong contrast to the
QCD predictions which have a complex phase structure. The perturbative QCD
predictions [174, 175, 83] for the Compton amplitude phase can be tested in virtual
Compton scattering by interference with Bethe-Heitler processes [86].

The “handbag” approximation to Compton scattering [182, 183] has been applied
to γγ → pp and pp → γγ reactions at large energy [186]. In this case, one assumes
that the process occurs via the exchange of a diquark with light-cone momentum
fraction x ∼ 0, so that the hard subprocess is qq → γγ where nearly on-shell quarks
annihilate with the full energy of the baryons. The critical question is whether the
proton wavefunction has significant support when the massive diquark has zero light-
front momentum fraction, since the diquark light-cone kinetic energy and the bound
state wavefunction become far-off shell k2

F ∼ −(m2 + k2
⊥)/x→ −∞ in this domain.

Measurements of timelike Compton scattering in γγ → pp and pp → γγ at large
s and t are thus critical for settling these issues.
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11 Hadron Helicity Conservation

Hadron helicity conservation (HHC) is a QCD selection rule concerning the behavior
of helicity amplitudes at high momentum transfer, such as fixed CM scattering. Since
the convolution of TH with the light-cone wavefunctions projects out states with
Lz = 0, the leading hadron amplitudes conserve hadron helicity [79, 187]. Thus the
dominant amplitudes are those in which the sum of hadron helicities in the initial
state equals the sum of hadron helicities in the final state; other helicity amplitudes
are relatively suppressed by an inverse power in the momentum transfer.

In the case of electron-proton scattering, hadron helicity conservation states that
the proton helicity-conserving form factor ( which is proportional to GM) dominates
over the proton helicity-flip amplitude (proportional to GE/

√
τ ) at large momentum

transfer. Here τ = Q2/4M2, Q2 = −q2. Thus HHC predicts GE(Q2)/
√
τGM(Q2) → 0

at large Q2. The new data from Jefferson Laboratory [188] which shows a decrease in
the ratio GE(Q2)/GM(Q2) is not itself in disagreement with the HHC prediction.

The leading-twist QCD motivated form Q4GM(Q2) ≃ const/Q4 lnQ2Λ2 provides
a good guide to both the time-like and spacelike proton form factor data at Q2 > 5
GeV2 [189]. The Jefferson Laboratory data [188] appears to suggestQF2(Q

2)/F1(Q
2) ≃

const, for the ratio of the proton’s Pauli and Dirac form factors in contrast to the fall-
off Q2F2(Q

2)/F1(Q
2) ≃ const (modulo logarithms) expected from PQCD. It should

however be noted that a PQCD-motivated fit is not precluded. For example, the
form [92]

F2(Q
2)

F1(Q2)
=

µA

1 + (Q2/c) lnb(1 +Q2/a)
(26)

with µA = 1.79, a = 4m2
π = 0.073 GeV2, b = −0.5922, c = 0.9599 GeV2 which

is consistent with leading-twist hadron helicity conservation also fits the data well.
More recently, Belitsky, Ji and Yuan [88] have demonstrated that the perturbative

QCD prediction has the asymptotic form Q2 F2(Q2)
F1(Q2)

∼ log2Q2 and also fits the data
well.

The study of time-like hadronic form factors using pp → ℓ+ℓ− annihilation and
e+e− colliding beams can provide very sensitive tests of HHC, since the virtual photon
always has spin ±1 along the lepton axis at high energies in the CM system. Angular
momentum conservation implies that the virtual photon can “decay” with one of only
two possible angular distributions in the center of momentum frame: (1 + cos2 θ) for
|λA−λB| = 1 and sin2 θ for |λA−λB| = 0 where λA and λB are the helicities of the out-
going hadrons. Hadronic helicity conservation, as required by QCD, greatly restricts
the possibilities. It implies that λA +λB = 0. Consequently, angular momentum con-
servation requires |λA| = |λB| = l/2 for baryons, and |λA| = |λB| = 0 for mesons; thus
the angular distributions for any sets of hadron pairs are now completely determined
at leading twist: dσ

d cos θ
(e+e− = BB) ∝ 1 + cos2 θ and dσ

d cos θ
(e+e− = MM ) ∝ sin2 θ.

Verifying these angular distributions for vector mesons and other higher spin mesons
and baryons would verify the vector nature of the gluon in QCD and the validity of
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PQCD applications to exclusive reactions.
It is usually assumed that a heavy quarkonium state such as the J/ψ always

decays to light hadrons via the annihilation of its heavy quark constituents to gluons.
However, as Karliner and I [190] have shown, the transition J/ψ → ρπ can also occur
by the rearrangement of the cc from the J/ψ into the | qqcc〉 intrinsic charm Fock
state of the ρ or π. On the other hand, the overlap rearrangement integral in the decay
ψ′ → ρπ will be suppressed since the intrinsic charm Fock state radial wavefunction
of the light hadrons will evidently not have nodes in its radial wavefunction. This
observation provides a natural explanation of the long-standing puzzle why the J/ψ
decays prominently to two-body pseudoscalar-vector final states in conflict with HHC,
whereas the ψ′ does not. If the intrinsic charm explanation is correct, then this
mechanism will complicate the analysis of virtually all heavy hadron decays such as
J/ψ → pp. In addition, the existence of intrinsic charm Fock states, even at a few
percent level, provides new, competitive decay mechanisms for B decays which are
nominally CKM-suppressed [191]. For example, the weak decays of the B-meson to
two-body exclusive states consisting of strange plus light hadrons, such as B → πK,
are expected to be dominated by penguin contributions since the tree-level b →
suu decay is CKM suppressed. However, higher Fock states in the B wave function
containing charm quark pairs can mediate the decay via a CKM-favored b → scc
tree-level transition. The presence of intrinsic charm in the b meson can be checked
by the observation of final states containing three charmed quarks, such as B →
J/ψDπ [192].

12 Other Hard Exclusive Processes

There are a large number of measured exclusive reactions in which the empirical power
law fall-off predicted by dimensional counting and PQCD appears to be accurate over
a large range of momentum transfer. The approach to scaling of s7dσ/dt(γp→ π+n)
shown in Fig. 10 appears to indicate that leading-twist PQCD is applicable at momen-
tum transfers exceeding a few GeV. If anything, the scaling appears to work too well,
considering that one expects logarithmic deviations due to the running of the QCD
coupling and the logarithmic evolution of the hadron distribution amplitudes. The
deviations from scaling at lower energies [194] are interesting and can be attributed
to s-channel resonances or perhaps heavy quark threshold effects, merging into the
fixed-angle scaling in a similar way as one observes the approach to leading-twist
Bjorken-scaling behavior in deep inelastic scattering via quark-hadron duality [195].

The absence of significant corrections to leading-twist scaling suggests that the
running coupling is effectively frozen at the kinematics relevant to the data. If higher-
twist soft processes are conspiring to mimic leading-twist scaling s7dσ/dt(γp→ π+n),
then we would have the strange situation of seeing two separate kinematic domains
of s7 scaling of the photoproduction cross section. It has been argued [180, 196] that
the Compton amplitude is dominated by soft end-point contributions of the proton
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Figure 10: Comparison of photoproduction data with the dimensional counting power-
law prediction. The data are summarized in Anderson et al. [193]

wavefunctions where the two photons both interact on a quark line carrying nearly
all of the proton’s momentum. However, a corresponding soft endpoint explanation
of the observed s7dσ/dt(γp → π+n) scaling of the pion photoproduction data is
not apparent; there is no endpoint contribution which could explain the success of
dimensional counting in large-angle pion photoproduction apparent in Fig. 10.

Exclusive two-photon processes where two photons annihilate into hadron pairs
γγ → HH at high transverse momentum provide highly valuable probes of coherent
effects in quantum chromodynamics. For example, in the case of exclusive final states
at high momentum transfer and fixed θcm such as γγ → pp or meson pairs, photon-
photon collisions provide a time-like microscope for testing fundamental scaling laws
of PQCD and for measuring distribution amplitudes. Counting rules predict asymp-
totic fall-off s4dσ/dt ∼ f(t/s) for meson pairs and s6dσ/dt ∼ f(t/s) for baryon pairs.
Hadron-helicity conservation predicts dominance of final states with λH + λH = 0.

39



The angular dependence reflects the distribution amplitudes. One can also study
γ∗γ → hadron pairs in e±e− collisions as a function of photon virtuality, the time-like
analog of deeply virtual Compton scattering which is sensitive to the two hadron
distribution amplitude. One can also study the interference of the time-like Comp-
ton amplitude with the bremsstrahlung amplitude e±e→ BBe±e− where a time-like
photon produces the pair. The e± asymmetry measures the relative phase of the
time-like hadron form factor with that of the virtual Compton amplitude.

The PQCD predictions for the two-photon production of charged pions and kaons
is insensitive to the shape of the meson distribution amplitudes. In fact, the ratio
of the γγ → π+π− and e+e− → µ+µ− amplitudes at large s and fixed θCM can be
predicted since the ratio is nearly insensitive to the running coupling and the shape
of the pion distribution amplitude:

dσ
dt

(γγ → π+π−)
dσ
dt

(γγ → µ+µ−)
∼ 4|Fπ(s)|2

1 − cos2 θc.m.
. (27)

The comparison of the PQCD prediction for the sum of π+π− plus K+K− channels
with CLEO data [197] is shown in Fig. 11. Results for separate pion and kaon channels
have been given by the TPC/2γ collaboration [198]. The angular distribution of

102

100

10–1

1 3 5

W (GeV)8-2000�
8561A19

σ 
(γ

γ  
   

 π
+ π

−  +
 Κ

+ Κ
− )

 (n
b)

L.O. QCD
(Brodsky & Lepage)

cosΘ∗  < 0.6

Figure 11: Comparison of the sum of γγ → π+π− and γγ → K+K− meson pair
production cross sections with the perturbative QCD prediction [81] normalized to
the timelike pion form factor. The data are from the CLEO collaboration [197].

meson pairs is also predicted by PQCD at large momentum transfer. The CLEO data
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for charged pion and kaon pairs show a clear transition to the angular distribution
predicted by PQCD for W =

√
sγγ > 2 GeV. Similarly in γγ → pp one can see

a dramatic change in the fixed angle distribution as one enters the hard scattering
domain. It is clearly important to measure the two-photon production of neutral pions
and ρ+ρ− cross sections in view of their strong sensitivity to the shape of meson
distribution amplitudes. Furthermore, the ratio of π+π− to π0π0 cross sections is
highly sensitive to the production dynamics. The ratio σ(γγ → π0π0)/σ(γγ → π+π−)
at fixed angles is predicted to be very small in PQCD; in contrast, this ratio is of O
1 in soft handbag models.

An interesting contribution to K+p → K+p scattering comes from the exchange
of the common u quark. The quark interchange amplitude for A + B → C + D
can be written as a convolution of the four light-cone wavefunctions multiplied by
a factor ∆− = P−

A + P−
B − ∑

i k
−
i , the inverse of the central propagator [80]. The

interchange amplitude is consistent with constituent counting rule scaling, and often
provides a phenomenologically accurate representation of the θc.m. angular distribu-
tion at large momentum transfer. For example, the angular distribution of processes
such as K+p → K+p appear to follow the predictions based on quark interchange,
e.g., TH((u1s)(u2u3d) → (u2s)(u1u3d) [80]. This mechanism also provides constraints
on Regge intercepts αR(t) for meson exchange trajectories at large momentum trans-
fer [77]. An extensive review of this phenomenology is given in the review by Sivers
et al. [199]

it is also interesting to study amplitudes where a nuclear wavefunction has to
absorb large momentum transfer. For example, the helicity-conserving deuteron
form factor is predicted to scale as Fd(Q

2) ∝ (Q2)−5 reflecting the minimal six
quark component of nuclear wavefunction. The deuteron form factor at high Q2

is sensitive to wavefunction configurations where all six quarks overlap within an im-
pact separation b⊥i < O(1/Q). The leading power-law fall off predicted by QCD is
Fd(Q

2) = f(αs(Q
2))/(Q2)5, where, asymptotically [102, 36], f(αs(Q

2)) ∝ αs(Q
2)5+2γ .

In general, the six-quark wavefunction of a deuteron is a mixture of five different
color-singlet states. The dominant color configuration at large distances corresponds
to the usual proton-neutron bound state. However, at small impact space separa-
tion, all five Fock color-singlet components eventually acquire equal weight, i.e., the
deuteron wavefunction evolves to 80% “hidden color”[36]. The relatively large normal-
ization of the deuteron form factor observed at large Q2 hints at sizable hidden-color
contributions [103].

Hidden color components can also play a predominant role in the reaction γd →
J/ψpn at threshold if it is dominated by the multi-fusion process γgg → J/ψ. In
the case of nuclear structure functions beyond the single nucleon kinematic limit,
1 < xbj < A, the nuclear light-cone momentum must be transferred to a single quark,
requiring quark-quark correlations between quarks of different nucleons in a compact,
far-off-shell regime. This physics is also sensitive to the part of the nuclear wave-
function which contains hidden-color components in distinction from a convolution of
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separate color-singlet nucleon wavefunctions. One also sees the onset of the predicted
perturbative QCD scaling behavior for exclusive nuclear amplitudes such as deuteron
photodisintegration (Here n = 1+6+3+3 = 13.) s11 dσ

dt
(γd→ pn) ∼ constant at fixed

CM angle. The measured deuteron form factor and the deuteron photodisintegration
cross section appear to follow the leading-twist QCD predictions at large momentum
transfers in the few GeV region [200, 201, 202]. A comparison of the data with the
QCD predictions is shown in Fig. 12.

Figure 12: Fits of the cross sections dσ/dt to s−11 for PT ≥ P th
T and proton an-

gles between 30◦ and 150◦ (solid lines). Data are from CLAS (full/red circles),
Mainz(open/black squares), SLAC (full-down/green triangles), JLab Hall A (full/blue
squares) and Hall C (full-up/black triangles). Also shown in each panel is the χ2

ν value
of the fit. From Ref. [202].

In the case of the deuteron form factor, the proton and neutron share the deuteron’s
momentum equally to first approximation. Since the deuteron form factor contains
the probability amplitudes for the proton and neutron to scatter from p/2 to p/2+q/2,
it is natural to define the reduced deuteron form factor [102, 36]

fd(Q
2) ≡ Fd(Q

2)

F1N

(
Q2

4

)
F1N

(
Q2

4

) . (28)
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The effect of nucleon compositeness is removed from the reduced form factor. QCD
then predicts the scaling

fd(Q
2) ∼ 1

Q2
; (29)

i.e. the same scaling law as a meson form factor. This scaling is consistent with
experiment for Q >∼ 1 GeV. In fact as seen in Fig. 1, the deuteron reduced form
factor contains two components: (1) a fast falling component characteristic of nuclear
binding with probability 85%, and (2) a hard contribution falling as a monopole with
a scale of order 0.5 GeV with probability 15%.

In the case of deuteron photodisintegration γd → pn the amplitude requires the
scattering of each nucleon at tN = td/4. The perturbative QCD scaling is [203]

dσ

dΩc.m.
(γd→ np) =

1
√
s(s−M2

d )

F 2
n(td/4)F 2

p (td/4)f 2
red(θc.m)

p2
⊥

. (30)

The predicted scaling of the reduced photodisintegration amplitude fred(θc.m.) ≃ const
is also consistent with experiment [203, 200, 201]. See Fig. 13.

Previous Work

This Expt.
Θc.m.=90˚

f2
 (Θ

c.
m

.) 
(G

eV
2 

/s
r)

0
0 500 1000 1500

1

2

Eγ (MeV)
8-2000
8561A6

Figure 13: Comparison of deuteron photodisintegration data with the scaling pre-
diction which requires f 2(θcm) to be at most logarithmically dependent on energy at
large momentum transfer. The data in are from Belz et al.[204] The solid curve is a
nuclear physics prediction [205].

The observation of conformal scaling behavior [102] in exclusive deuteron processes
such as deuteron photoproduction [202] and the deuteron form factor [101] is partic-
ularly interesting. For example, at high Q2 the deuteron form factor is sensitive to
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wavefunction configurations where all six quarks overlap within an impact separation
b⊥i < O(1/Q). In general, the six-quark wavefunction of a deuteron is a mixture of
five different color-singlet states. The dominant color configuration at large distances
corresponds to the usual proton-neutron bound state. However at small impact space
separation, all five Fock color-singlet components eventually acquire equal weight,
i.e., the deuteron wavefunction evolves to 80% “hidden color.” The derivation of the
evolution equation for the deuteron distribution amplitude and its leading anomalous
dimension γ is given in Ref. [36]. As emphasized in the introduction, the relatively
large normalization of the deuteron form factor observed at large Q2 [103], as well as
the presence of two mass scales in the scaling behavior of the reduced deuteron form
factor [102] fd(Q

2) = Fd(Q
2)/F 2(Q2/4) suggests sizable hidden-color contributions in

the deuteron wavefunction. See Fig. 1.

The postulate that the QCD coupling has an infrared fixed-point provides addi-
tional understanding of the applicability of conformal scaling and constituent counting
rules to physical QCD processes [44, 75]. The general success of dimensional counting
rules implies that the effective coupling αV (Q∗) controlling the gluon exchange prop-
agators in TH are frozen in the infrared, since the effective momentum transfers Q∗

exchanged by the gluons are often a small fraction of the overall momentum trans-
fer [140]. In this case, the pinch contributions are suppressed by a factor decreasing
faster than a fixed power [44]. The effective coupling ατ (s) extracted from τ decays
displays a flat behavior at low mass scales [64].

The field of analyzable exclusive processes has been expanded to a wide range
of QCD processes, such as electroweak decay amplitudes, highly virtual diffractive
processes such as γ∗p → ρp [206, 207], and semi-exclusive processes such as γ∗p →
π+X [208] where the π+ is produced in isolation at large pT . An important new
application is the recent analysis of hard exclusive B decays by Beneke et al. [129]
and Keum et al. [130]

Deeply virtual Compton amplitude γ∗p → γp has emerged as one of the most
important exclusive QCD reactions [209, 210, 211, 212]. The process factorizes into
a hard amplitude representing Compton scattering on the quark convoluted with the
skewed parton distributions. The resulting amplitudes can be represented as diag-
onal and off-diagonal convolutions of light-cone wavefunctions, as in semileptonic B
decay [84]. New sum rules can be constructed which correspond to gravitons coupling
to the quarks of the proton [209]. It is possible that the handbag approximation to
DVCS may be modified by corrections to the quark propagator similar to those which
appear in the final state interaction corrections to deep inelastic scattering [34, 120].
In particular, one can expect that the propagator corrections will give single-spin
asymmetries correlating the spin of the proton with the normal to the production
plane in DVCS [31].

The hard diffraction of vector mesons γ∗p→ V 0p at high Q2 and high energies for
longitudinally polarized vector mesons factorizes into a skewed parton distribution
convoluted with the hard scale γ∗g → gV 0 amplitude, where the physics of the vector

44



meson is contained in its distribution amplitude [206, 127, 213]. The data appears
consistent with the s, t and Q2 dependence predicted by theory. Ratios of these
processes for different mesons are sensitive to the ratio of 1/x moments of the V 0

distribution amplitudes.

The virtual two-photon annihilation process γ∗γ → hadrons, which is measurable
in single-tagged e+e− → e+e−hadrons events, provides a semi-local probe of even
charge conjugation C =+ hadron systems π0, η0, η′, ηc, π

+π−, etc. The γ∗γ → π+π−

hadron pair process is related to virtual Compton scattering on a pion target by cross-
ing. Hadron pair production is of particular interest since the leading-twist amplitude
is sensitive to the 1/x−1/(1−x) moment of the two-pion distribution amplitude cou-
pled to two valence quarks [127, 214]. This type of measurement can also constrain
the parameters of the effective chiral theory, which is needed for example to constrain
the hadronic light-by-light contribution to the muon magnetic moment [215].

One can also study hard “semi-exclusive” processes [208] of the form A+B → C+
Y which are characterized by a large momentum transfer between the particles A and
C and a large rapidity gap between the final state particle C and the inclusive system
Y . Such reactions are in effect generalizations of deep inelastic lepton scattering,
providing novel currents which probe specific quark distributions of the target B at
fixed momentum fraction and novel spin-dependent parton distributions.

13 Heavy Quark Components of the Proton Struc-

ture Function

In the simplest treatment of deep inelastic scattering, nonvalence quarks are produced
via gluon splitting and DGLAP evolution. However, in a full theory heavy quarks
are multiply-connected to the valence quarks [95]. For example, the asymmetry of
the strange and anti-strange distributions in the nucleon is due to their different
interactions with the other quark constituents. The probability for Fock states of
a light hadron such as the proton to have an extra heavy quark pair decreases as
1/m2

Q in non-Abelian gauge theory [96, 97]. The relevant matrix element is the
cube of the QCD field strength G3

µnu. This is in contrast to abelian gauge theory
where the relevant operator is F 4

µν and the probability of intrinsic heavy leptons
in QED bound state is suppressed as 1/m4

ℓ . The intrinsic Fock state probability
is maximized at minimal off shellness. The maximum probability occurs at xi =
mi

⊥/
∑n

j=1m
j
⊥; i.e., when the constituents have equal rapidity. Thus the heaviest

constituents have the highest momentum fractions and highest x. Intrinsic charm
thus predicts that the charm structure function has support at large xbj in excess of
DGLAP extrapolations [95]; this is in agreement with the EMC measurements [98].
It predicts leading charm hadron production and fast charmonium production in
agreement with measurements [216]. The production cross section for the double
charmed Ξ+

cc baryon [217] and the production of double J/ψ′s appears to be consistent
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with the dissociation and coalescence of double IC Fock states [218]. Intrinsic charm
can also explain the J/ψ → ρπ puzzle [190]. It also affects the extraction of suppressed
CKM matrix elements in B decays [191]. It is thus critical for new experiments
(HERMES, HERA, COMPASS) to definitively establish the phenomenology of the
charm structure function at large xbj .

Since the intrinsic charm quarks have a relatively hard distribution in the nu-
cleon, one expects enhanced open and hidden charm production near the kinematic
threshold. This will be particularly interesting to study in the new GSI antiproton
facility.

14 The Strange Quark Asymmetry

Although the strange and antistrange distributions in the nucleon are identical when
they derive from gluon-splitting g → ss, this is not the case when the strange quarks
are part of the intrinsic structure of the nucleon. There is a simple analog in QED:
Consider the τ± distributions in the (rare!) | e−µ+τ+τ−〉 Fock state of muonium
(µ+e−). The τ− is attracted by Coulomb interactions to the high rapidity µ+ . Thus
the τ− will tend to have higher rapidity than the τ+.

Similar effects will happen in QCD. If we use the diquark model | p〉 ∼
∣∣∣u3c

(ud)3C

〉
,

then the Q3C
in the

∣∣∣u(ud)QQ
〉

Fock state will be attracted to the heavy diquark

and thus have higher rapidity than the Q.
An alternative model is the |KΛ〉 fluctuation model for the | uudss〉 Fock state

of the proton [28]. The s quark tends to have higher x.
The experimentally observed asymmetry [219] appears to be small but positive:∫

dxx[s(x)−s(x)]. The s(x)−s(x) asymmetry can be studied in detail in pp collisions
by searching for antisymmetric forward-backward strange quark distributions in the
p− p CM frame.

15 The Infrared Behavior of Effective QCD Cou-

plings

It is often assumed that color confinement in QCD can be traced to the singular
behavior of the running coupling in the infrared, i.e. “infrared slavery.” For example,
if αs(q

2) → 1/q2 at q2 → 0, then one-gluon exchange leads to a linear potential at large
distances. However, theoretical [220, 221, 222, 223, 224] and phenomenological [225,
64, 65] evidence is now accumulating that the QCD coupling becomes constant at
small virtuality; i.e., αs(Q

2) develops an infrared fixed point in contradiction to the
usual assumption of singular growth in the infrared. Since all observables are related
by commensurate scale relations, they all should have an IR fixed point [223]. A
recent study of the QCD coupling using lattice gauge theory in Landau gauge in fact
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shows an infrared fixed point [66]. This result is also consistent with Dyson-Schwinger
equation studies of the physical gluon propagator [220, 221]. The relationship of
these results to the infrared-finite coupling for the vector interaction defined in the
quarkonium potential has recently been discussed by Badalian and Veselov [67].

One can define the fundamental coupling of QCD from virtually any physical ob-
servable [226]. Such couplings, called “effective charges”, are all-order resummations
of perturbation theory, so they correspond to the complete theory of QCD. Unlike the
MS coupling, a physical coupling is analytic across quark flavor thresholds [227, 228].
In particular, heavy particles will contribute to physical predictions even at energies
below their threshold. This is in contrast to mathematical renormalization schemes
such as MS, where mass thresholds are treated as step functions. In addition, since
the QCD running couplings defined from observables are bounded, integrations over
effective charges are well defined and the arguments requiring renormalon resumma-
tions do apply. The physical couplings satisfy the standard renormalization group
equation for its logarithmic derivative, dαphys/d ln k2 = β̂phys[αphys(k

2)], where the

first two terms in the perturbative expansion of β̂phys are scheme-independent at lead-
ing twist; the higher order terms have to be calculated for each observable separately
using perturbation theory.

Menke, Merino, and Rathsman [64] and I have considered a physical coupling for
QCD which is defined from the high precision measurements of the hadronic decay
channels of the τ− → ντh

−. Let Rτ be the ratio of the hadronic decay rate to the
leptonic rate. Then Rτ ≡ R0

τ

[
1 + ατ

π

]
, where R0

τ is the zeroth order QCD prediction,
defines the effective charge ατ . The data for τ decays is well-understood channel by
channel, thus allowing the calculation of the hadronic decay rate and the effective
charge as a function of the τ mass below the physical mass. The vector and axial-
vector decay modes which can be studied separately. Using an analysis of the τ data
from the OPAL collaboration [68], we have found that the experimental value of the
coupling ατ (s) = 0.621±0.008 at s = m2

τ corresponds to a value of αMS(M
2
Z) = (0.117-

0.122) ± 0.002, where the range corresponds to three different perturbative methods
used in analyzing the data. This result is in good agreement with the world average
αMS(M

2
Z) = 0.117 ± 0.002. However, from the figure we also see that the effective

charge only reaches ατ (s) ∼ 0.9 ± 0.1 at s = 1 GeV2, and it even stays within
the same range down to s ∼ 0.5 GeV2. This result is in good agreement with the
estimate of Mattingly and Stevenson [225] for the effective coupling αR(s) ∼ 0.85 for√
s < 0.3 GeV determined from e+e− annihilation, especially if one takes into account

the perturbative commensurate scale relation, ατ (m
2
τ ′) = αR(s∗), where s∗ ≃ 0.10m2

τ ′.
This behavior is not consistent with the coupling having a Landau pole, but rather
shows that the physical coupling is close to constant at low scales, suggesting that
physical QCD couplings are effectively constant or “frozen” at low scales.

Figure 14 shows a comparison of the experimentally determined effective charge
ατ (s) with solutions to the evolution equation for ατ at two-, three-, and four-loop
order normalized at mτ . At three loops the behavior of the perturbative solution
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drastically changes, and instead of diverging, it freezes to a value ατ ≃ 2 in the
infrared. The infrared behavior is not perturbatively stable since the evolution of
the coupling is governed by the highest order term. This is illustrated by the widely
different results obtained for three different values of the unknown four loop term βτ,3

which are also shown. The values of βτ,3 used are obtained from the estimate of the

four loop term in the perturbative series of Rτ , K
MS
4 = 25± 50 [229]. It is interesting

to note that the central four-loop solution is in good agreement with the data all the
way down to s ≃ 1 GeV2.
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Figure 14: The effective charge ατ for non-strange hadronic decays of a hypothetical
τ lepton with m2

τ ′ = s compared to solutions of the fixed order evolution equation
for ατ at two-, three-, and four-loop order. The error bands include statistical and
systematic errors.

The results for ατ resemble the behavior of the one-loop “time-like” effective
coupling [230, 231, 232]

αeff(s) =
4π

β0

{
1

2
− 1

π
arctan

[
1

π
ln

s

Λ2

]}
(31)

which is finite in the infrared and freezes to the value αeff(s) = 4π/β0 as s→ 0. It is
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instructive to expand the “time-like” effective coupling for large s,

αeff(s) =
4π

β0 ln (s/Λ2)

{

1 − 1

3

π2

ln2 (s/Λ2)
+

1

5

π4

ln4 (s/Λ2)
+ . . .

}

= αs(s)




1 − π2β2
0

3

(
αs(s)

4π

)2

+
π4β4

0

5

(
αs(s)

4π

)4

+ . . .




 . (32)

This shows that the “time-like” effective coupling is a resummation of (π2β2
0α

2
s )

n-
corrections to the usual running couplings. The finite coupling αeff given in Eq. (31)
obeys standard PQCD evolution at LO. Thus one can have a solution for the pertur-
bative running of the QCD coupling which obeys asymptotic freedom but does not
have a Landau singularity.

The near constancy of the effective QCD coupling at small scales illustrates the
near-conformal behavior of QCD. It helps explain the empirical success of dimensional
counting rules for the power law fall-off of form factors and fixed angle scaling. As
shown in the references [62, 233], one can calculate the hard scattering amplitude
TH for such processes [76] without scale ambiguity in terms of the effective charge
ατ or αR using commensurate scale relations. The effective coupling is evaluated in
the regime where the coupling is approximately constant, in contrast to the rapidly
varying behavior from powers of αs predicted by perturbation theory (the universal
two-loop coupling). For example, the nucleon form factors are proportional at leading
order to two powers of αs evaluated at low scales in addition to two powers of 1/q2;
The pion photoproduction amplitude at fixed angles is proportional at leading order
to three powers of the QCD coupling. The essential variation from leading-twist
counting-rule behavior then only arises from the anomalous dimensions of the hadron
distribution amplitudes.

16 The Role of Conformal Symmetry in QCD Phe-

nomenology

The classical Lagrangian of QCD for massless quarks is conformally symmetric. Since
it has no intrinsic mass scale, the classical theory is invariant under the SO(4, 2)
translations, boosts, and rotations of the Poincare group, plus the dilatations and
other transformations of the conformal group. Scale invariance, and therefore confor-
mal symmetry is destroyed in the quantum theory by the renormalization procedure
which introduces a renormalization scale as well as by quark masses. Conversely,
Parisi [47] has shown that perturbative QCD becomes a conformal theory for β → 0
and zero quark mass. Conformal symmetry is thus broken in physical QCD; neverthe-
less, we can still recover the underlying features of the conformally invariant theory
by evaluating any expression in QCD in the analytic limit of zero quark mass and
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zero β function:
lim

mq→0,β→0
OQCD = Oconformal QCD . (33)

This conformal correspondence limit is analogous to Bohr’s correspondence principle
where one recovers predictions of classical theory from quantum theory in the limit
of zero Planck constant. The contributions to an expression in QCD from its nonzero
β-function can be systematically identified [56, 55, 57] order-by-order in perturbation
theory using the Banks-Zaks procedure [58].

There are a number of useful phenomenological consequences of near conformal
behavior of QCD: the conformal approximation with zero β function can be used as
template for QCD analyses [50, 49] such as the form of the expansion polynomials for
distribution amplitudes [51, 59]. The near-conformal behavior of QCD is the basis
for commensurate scale relations [54] which relate observables to each other without
renormalization scale or scheme ambiguities [56, 55]. By definition, all contributions
from the nonzero β function can be incorporated into the QCD running coupling
αs(Q) where Q represents the set of physical invariants. Conformal symmetry thus
provides a template for physical QCD expressions. For example, perturbative expan-
sions in QCD for massless quarks must have the form

O =
∑

n=0

Cnα
n
s (Q∗

n) (34)

where the Cn are identical to the expansion coefficients in the conformal theory, and
Q∗

n is the scale chosen to resum all of the contributions from the nonzero β function
at that order in perturbation theory. Since the conformal theory does not contain
renormalons, the Cn do not have the divergent ngrowth characteristic of conventional
PQCD expansions evaluated at a fixed scale.

17 The AFS/CFT Correspondence and Conformal

Properties of Hadronic Light-Front Wavefunc-

tions

As shown by Maldacena [11], there is a remarkable correspondence between large NC

supergravity theory in a higher dimensional anti-de Sitter space and supersymmet-
ric QCD in 4-dimensional space-time. String/gauge duality provides a framework
for predicting QCD phenomena based on the conformal properties of the AdS/CFT
correspondence.

The AdS/CFT correspondence is based on the fact that the generators of confor-
mal and Poincare transformations have representations on the five-dimensional anti-
deSitter space AdS5 as well as Minkowski spacetime. For example, Polchinski and
Strassler [12] have shown that the power-law fall-off of hard exclusive hadron-hadron
scattering amplitudes at large momentum transfer can be derived without the use
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of perturbation theory by using the scaling properties of the hadronic interpolating
fields in the large-r region of AdS space. Thus one can use the Maldacena corre-
spondence to compute the leading power-law behavior of exclusive processes such as
high-energy fixed-angle scattering of gluonium-gluonium scattering in supersymmet-
ric QCD. The resulting predictions for hadron physics effectively coincide [12, 13, 14]
with QCD dimensional counting rules for form factors and hard scattering ampli-
tudes [42, 43, 44, 234]. Polchinski and Strassler [12] have also derived counting rules
for deep inelastic structure functions at x → 1 in agreement with perturbative QCD
predictions [76, 107] as well as Bloom-Gilman exclusive-inclusive duality [235].

The supergravity analysis is based on an extension of classical gravity theory in
higher dimensions and is nonperturbative. Thus analyses of exclusive processes [76]
which were based on perturbation theory can be extended by the Maldacena corre-
spondence to all orders. An important point is that the hard scattering amplitudes
which are normally or order αp

s in PQCD appear as order αp/2
s in the supergravity

predictions. This can be understood as an all-orders resummation of the effective
potential [11, 236].

The superstring theory results are derived in the limit of a large NC [237]. For
gluon-gluon scattering, the amplitude scales as 1/N2

C . For color-singlet bound states
of quarks, the amplitude scales as 1/NC . This large NC-counting, in fact, corresponds
to the quark interchange mechanism [80]. For example, for K+p → K+p scattering,
the u-quark exchange amplitude scales approximately as 1

u
1
t2
, which agrees remark-

ably well with the measured large θCM dependence of the K+p differential cross
section [238]. This implies that the nonsinglet Reggeon trajectory asymptotes to a
negative integer [77], in this case, lim−t→∞ αR(t) → −1.

De Teramond and I have extended the Polchinski-Strassler analysis to hadron-
hadron scattering [41]. We have also shown how to compute the form and scaling of
light-front hadronic wavefunctions using the AdS/CFT correspondence in quantum
field theories which have an underlying conformal structure, such as N = 4 super-
conformal QCD. For example, baryons are included in the theory by adding an open
string sector in AdS5×S5 corresponding to quarks in the fundamental representation
of the SU(4) symmetry defined on S5 and the fundamental and higher representations
of SU(NC). The hadron mass scale is introduced by imposing boundary conditions
at the AdS5 coordinate r = r0 = ΛQCDR

2. The quantum numbers of the lowest Fock
state of each hadron, including its internal orbital angular momentum and spin-flavor
symmetry, are identified by matching the fall-off of the string wavefunction Ψ(x, r)
at the asymptotic 3+1 boundary. Higher Fock states are identified with conformally
invariant quantum fluctuations of the bulk geometry about the AdS background.
The eigenvalues of the 10-dimensional Dirac and Rarita-Schwinger equations have
also been used to determine the nucleon and ∆ spectrum in conformal QCD. The
results are in surprising agreement with the empirical spectra [239].

One can also use the scaling properties of the hadronic interpolating operator
in the extended AdS/CFT space-time theory to determine the scaling of light-front

51



hadronic wavefunctions at high relative transverse momentum. De Teramond and
I [41] have also shown how the angular momentum dependence of the light-front
wavefunctions also follow from the conformal properties of the AdS/CFT correspon-
dence. where gs is the string scale and Λo represents the basic QCD mass scale.
Quantum fluctuations of the strings in the AdS radial direction correspond to the
quantum fluctuations of the hadron wavefunctions due to orbital angular momentum
and radial nodes in the 3+1 theory.

The scaling and conformal properties of the AdS/CFT correspondence leads to a
hard component of light-front wavefunctions of the form [41]:

ψn/h(xi, ~k⊥i, λi, lzi) ∼ (gs NC)
1

2
(n−1)

√
NC

n−1∏

i=1

(k±i⊥)|lzi|

×




Λo

M2 −∑
i

~k2
⊥i

+m2
i

xi
+ Λ2

o





n+|lz|−1

, (35)

where gs is the string scale and Λo represents the basic QCD mass scale. The scal-
ing predictions agree with perturbative QCD analyses [240, 76], but the AdS/CFT
analysis is performed at strong coupling without the use of perturbation theory. The
near-conformal scaling properties of light-front wavefunctions lead to a number of
other predictions for QCD which are normally discussed in the context of pertur-
bation theory, such as constituent counting scaling laws for structure functions at
x → 1, as well as the leading power fall-off of form factors and hard exclusive scat-
tering amplitudes for QCD processes.

18 Applicability of PQCD and Conformal Symme-

try to Hard Exclusive Processes

The PQCD/conformal symmetry predictions for hadron form factors are leading-twist
predictions. The only mass parameter is the QCD scale, so the power-law predictions
must be relevant—up to logarithms—even in the few GeV domain. Note also that
the same PQCD couplings which enter hard exclusive reactions are tested in DGLAP
evolution even at small Q2. As noted above, the dimensional counting rules for form
factors and exclusive processes have also been derived for conformal QCD using the
AdS/CFT correspondence [12, 41].

In fact, there have been a remarkable number of empirical successes of PQCD
predictions, including the scaling and angular dependence of γγ → π+π−, pion pho-
toproduction, vector meson electroproduction, and the photon-to-pion transition form
factor. A particularly dramatic example is deuteron photodisintegration which sat-
isfies the predicted scaling law [s11 dσ

dt
(γd → pn) ∼ const] at large p⊥ and fixed CM

angle [202] to remarkable high precision. Perturbative QCD predicts that only the
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small compact part of the light-front wavefunctions enter exclusive hard scattering
processes, and that these hadronic fluctuations have diminished interactions in a nu-
clear target [37]. Evidence for QCD color transparency has been observed for quasi-
elastic photoproduction [241] and proton-proton scattering [242]. In general, the
PQCD scaling behavior can be modulated by resonances and heavy quark threshold
phenomena [74] which can cause dramatic spin correlations [243] as well as novel
color transparency effects [37, 242]. The approach to scaling in pion photoproduc-
tion: [s7 dσ

dt
(γp → nπ+) ∼ const] and evidence for structure due to the strangeness

threshold have recently been studied at Jefferson Laboratory [244].
Leading-order perturbative QCD predicts the empirical scaling of form factors and

other hard exclusive amplitudes, but it typically underestimate the normalization.
The normalization of theoretical prediction involves questions of the shape of the
hadron distribution amplitudes, the proper scale for the running coupling [62] as well
as higher order corrections. In fact, as noted above, in the AdS/CFT analysis, hard
scattering amplitudes which are normally of order αp

s in PQCD appear as order αp/2
s

in the nonperturbative theory [11, 236].
Further experimental studies, particularly measurements of pp annihilation into

two hadrons at GSI, electroproduction at Jefferson Laboratory and the study of two-
photon exclusive channels at CLEO and the B-factories have the potential of providing
critical information on the hadron wavefunctions as well as testing the dominant
dynamical processes at short distances.

19 Color Transparency

One of the most distinctive tests for the underlying gauge theory basis for the strong
interactions is color transparency: the small transverse size fluctuations of a hadron
wavefunction with a small color dipole moment have minimal interactions in a nu-
cleus [94, 37]. Each hadron entering or emitted from a hard exclusive reaction initially
emerges with high momentum and small transverse size b⊥. A fundamental feature
of gauge theory is that soft gluons decouple from the small color-dipole moment
of the compact fast-moving color-singlet wavefunction configurations of the incident
and final-state hadrons. The transversely compact color-singlet configurations can
effectively persist over a distance of order ℓIoffe = O(Elab/Q

2), the Ioffe coherence
length. Thus if we study hard quasi-elastic processes in a nuclear target such as
eA → e′p′(A − 1) or pA → p′(A − 1), the outgoing and ingoing hadrons will have
minimal absorption in a nucleus. The diminished absorption of hadrons produced in
hard exclusive reactions implies additivity of the nuclear cross section in nucleon num-
ber A and is the theoretical basis for the “color transparency” of hard quasi-elastic
reactions [37, 245, 246]. In contrast, in conventional Glauber scattering, one pre-
dicts strong, nearly energy-independent initial and final state attenuation. Similarly,
in hard diffractive processes such as γ∗(Q2)p → ρp [206], only the small transverse
configurations b⊥ ∼ 1/Q of the longitudinally polarized vector meson distribution
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amplitude are involved. Its hadronic interactions as it exits the nucleus will be mini-
mal, and thus the γ∗(Q2)N → ρN reaction can occur coherently throughout a nuclear
target in reactions without absorption or shadowing.

Color transparency has also been tested in large angle quasi-elastic pA→ ppA−1
scattering [247, 248, 249, 242] where only the small size fluctuations of the hadron
wavefunction enters the hard exclusive scattering amplitude. There is evidence for
the onset of color transparency in the regime 6 < s < 25 GeV2, indicating that small
wavefunction configurations are indeed controlling this exclusive reaction at moderate
momentum transfers. However at plab ≃ 12 GeV, Ecm ≃ 5 GeV, color transparency
dramatically fails. See Fig. 15. It is noteworthy that in the same energy range,
the normal-normal spin asymmetry ANN in elastic pp → pp scattering at θcm = 900

increases dramatically to ANN ≃ 0.6; it is about four times more probable that the
protons scatter with helicity normal to the scattering plane than anti-normal [243].

Figure 15: The dependence of Carbon transparency on effective incident beam mo-
mentum (Peff) and on center of mass scattering angle (θc.m.). The data are from the
E850 C(p,2p) experiments [247, 248, 249, 242].

The unusual spin and color transparency effects seen in elastic proton-proton
scattering at ECM ∼ 5 GeV and large angles could be related to the charm threshold
and the effects of a |uuduudcc〉 resonance which would appear as in the J = L =
S = 1 pp partial wave [74, 250]. The intermediate state |uuduudcc〉 has odd intrinsic
parity and couples to the J = S = 1 initial state, thus strongly enhancing scattering
when the incident projectile and target protons have their spins parallel and normal
to the scattering plane. A similar enhancement of ANN is observed at the strangeness
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threshold. The physical protons coupling at the charm threshold will have normal
Glauber interactions, thus explaining the anomalous change in color transparency
observed at the same energy in quasi-elastic pp scattering. A crucial test of this
hypothesis is the observation of open charm production near threshold with a cross
section of order of 1µb [74, 250]. A similar cross section is expected for the second
threshold for open charm production from pp→ charm pp.

An alternative explanation of the color transparency and spin anomalies in pp
elastic scattering has been postulated by Ralston, Jain, and Pire [251, 246]. The
oscillatory effects in the large-angle pp → pp cross section and spin structure are
postulated to be due to the interference of Landshoff pinch and perturbative QCD
amplitudes. In the case of quasi-elastic reactions, the nuclear medium absorbs and
filters out the non-compact pinch contributions, leaving the additive hard contribu-
tions unabsorbed. It is clearly important that these two alternative explanations be
checked by experiment.

In general, one can expect strong effects whenever heavy quarks are produced at
low relative velocity with respect to each other or the other quarks in the reaction since
the QCD van der Waals interactions become maximal in this domain. The opening of
the strangeness and charm threshold in intermediate states can become most apparent
in large angle reactions such as pp scattering and pion photoproduction since the
competing perturbative QCD amplitudes are power-suppressed. Charm and bottom
production near threshold such as J/ψ photoproduction is also sensitive to the multi-
quark, gluonic, and hidden-color correlations of hadronic and nuclear wavefunctions
in QCD since all of the target’s constituents must act coherently within the small
interaction volume of the heavy quark production subprocess [99]. Although such
multi-parton subprocess cross sections are suppressed by powers of 1/m2

Q, they have
less phase-space suppression and can dominate the contributions of the leading-twist
single-gluon subprocesses in the threshold regime.

20 Measuring Light-Front Wavefunctions in QCD

and Testing Color Transparency using Diffrac-

tive Dissociation

Diffractive multi-jet production in heavy nuclei provides a novel way to measure the
shape of light-front Fock state wave functions and test color transparency [37]. For
example, consider the reaction [94, 252] πA→ Jet1 + Jet2 +A′ at high energy where
the nucleus A′ is left intact in its ground state. The transverse momenta of the jets
balance so that ~k⊥i + ~k⊥2 = ~q⊥ < R−1

A . The light-cone longitudinal momentum
fractions also need to add to x1 + x2 ∼ 1 so that ∆pL < R−1

A . The process can
then occur coherently in the nucleus. Because of color transparency, the valence
wave function of the pion with small impact separation will penetrate the nucleus
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with minimal interactions, diffracting into jet pairs [94]. The x1 = x, x2 = 1 − x
dependence of the di-jet distributions will thus reflect the shape of the pion valence
light-cone wave function in x; similarly, the ~k⊥1 −~k⊥2 relative transverse momenta of
the jets gives key information on the derivative of the underlying shape of the valence
pion wavefunction [252, 253]. The diffractive nuclear amplitude extrapolated to t = 0
should be linear in nuclear number A if color transparency is correct. The integrated
diffractive rate should then scale as A2/R2

A ∼ A4/3.

These predictions have been verified by the E791 experiment at Fermilab for 500
GeV incident pions on nuclear targets [254]. The high energy pion diffracts into
dijets πA → qqA′ which balance in transverse momentum and leave the nucleus in
its ground state [255]. The measured momentum fraction distribution of the jets is
consistent with the shape of the pion asymptotic distribution amplitude, φasympt

π (x) =√
3fπx(1 − x) [256]. Data from CLEO [257] for the γγ∗ → π0 transition form factor

also favor a form for the pion distribution amplitude close to the asymptotic solution
to its perturbative QCD evolution equation [52, 258, 76].

These “self-resolving” diffractive processes thus provide direct experimental infor-
mation on the light-cone wavefunctions of the photon and proton in terms of their
QCD degrees of freedom, as well as the composition of nuclei in terms of their nu-
cleon and mesonic degrees of freedom. When the hadronic jets have balancing but
high transverse momentum, one studies the small size fluctuation of the incident pion.
The forward diffractive amplitude is observed to grow in proportion to the total num-
ber of nucleons in the nucleus, in agreement with the color transparency prediction
(see below), but in strong contrast to standard Glauber theory which predicts that
only the front surface of the nucleus should be effective.

The diffractive dissociation of a hadron or nucleus can also occur via the Coulomb
dissociation of a beam particle on an electron beam (e.g. at HERA or eRHIC) or on
the strong Coulomb field of a heavy nucleus (e.g. at RHIC or nuclear collisions at the
LHC) [259]. The amplitude for Coulomb exchange at small momentum transfer is
proportional to the first derivative

∑
i ei

∂
~kTi
ψ of the light-cone wavefunction, summed

over the charged constituents. The Coulomb exchange reactions fall off less fast at
high transverse momentum compared to pomeron exchange reactions since the light-
cone wavefunction is effective differentiated twice in two-gluon exchange reactions. It
is also interesting to study diffractive tri-jet production using proton beams pA →
Jet1 +Jet2 +Jet3 +A′ to determine the fundamental shape of the 3-quark structure of
the valence light-cone wavefunction of the nucleon at small transverse separation [260].

There has been an important debate whether diffractive jet production faith-
fully measures the light-front wavefunctions of the projectile. Braun et al. [261] and
Chernyak [262] have argued that one should systematically iterate the gluon exchange
kernel from all sources, including final state interactions. Thus if the hard momen-
tum exchange which produces the high transverse momentum di-jets occurs in the
final state, then the x and k⊥ distributions will reflect the gluon exchange kernel, not
the pion’s wavefunction. However, it should be noted that the measurements of pion
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diffraction by the E791 experiment [256] are performed on a platinum target. Only
the part of the pion wavefunction with small impact separation can give the observed
color transparency; i.e., additivity of the amplitude on nuclear number. Thus the
nucleus automatically selects events where the jets are produced at high transverse
momentum in the initial state before the pion reaches the nucleus [94].

The debate [263, 261, 262] concerning the nature of diffractive dijet dissociation
also applies to the simpler analysis of diffractive dissociation via Coulomb exchange.
The one-photon exchange matrix element can be identified with the spacelike electro-
magnetic form factor for π → qq; 〈π;P − q|j+(0)|qq;P 〉. Here the state | qq〉 is the
eigenstate of the QCD Hamiltonian; it is effectively an ‘out’ state. If we choose the
q+ = 0 frame where q2 = −~q 2

⊥, then the form factor is exactly the overlap integral
in transverse momentum of the pion and qq LFWFs summed over Fock States. The
form factor vanishes at Q2 = 0 because it is the matrix element of the total charge
operator and the pion and jet-jet eigenstates are orthogonal. The n = 2 contribution
to the form factor is the convolution ψπ(x, k⊥ − (1 − x)q⊥) with ψqq(x, k⊥). This
can be expanded at small q2 in terms of the transverse momentum derivatives of the
pion wavefunction. The final-state wavefunction represents an outgoing wave of free
quarks with momentum y, ℓ⊥ and 1 − y,−ℓ⊥. To first approximation, the wavefunc-
tion ψqq(x, k⊥) peaks strongly at x = y and k⊥ = ℓ⊥. Using this approximation, the
form factor at small Q2 is proportional to the derivative of the pion light-cone wave-
function [eq(1− x)− eqx]

∂
dk⊥

ψπ(x, k⊥) evaluated at x = y and k⊥ = ℓ⊥. One can also
consider corrections to the final state wavefunction from gluon exchange. However,
the final quarks are already moving in the correct direction at zeroth order, so these
corrections would be expected to be of higher order.

21 The Generalized Crewther Relation

A central principle of renormalization theory is that predictions which relate physical
observables to each other cannot depend on theoretical conventions. For example,
one can use any renormalization scheme, such as the modified minimal subtraction
scheme, and any choice of renormalization scale µ to compute perturbative series re-
lating observables A and B. However, all traces of the choices of the renormalization
scheme and scale must disappear when one algebraically eliminates the αMS(µ) and
directly relates A to B. This is the principle underlying “commensurate scale rela-
tions” (CSR) [264], which are general leading-twist QCD predictions relating physical
observables to each other at their respective scales. An important example is the gen-
eralized Crewther relation [60]:

[

1 +
αR(s∗)

π

] [

1 − αg1
(Q2)

π

]

= 1 (36)

where the underlying form at zero β function is dictated by conformal symmetry [265].
Here αR(s)/π and −αg1

(Q2)/π represent the entire radiative corrections to Re+e−(s)
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and the Bjorken sum rule for the g1(x,Q
2) structure function measured in spin-

dependent deep inelastic scattering, respectively. The relation between s∗ and Q2

can be computed order by order in perturbation theory, as in the BLM method [61].
The ratio of physical scales guarantees that the effect of new quark thresholds is com-
mensurate. Commensurate scale relations are renormalization-scheme independent
and satisfy the group properties of the renormalization group. Each observable can
be computed in any convenient renormalization scheme such as dimensional regu-
larization. The MS coupling can then be eliminated; it becomes only an intermedi-
ary [54]. In such a procedure there are no further renormalization scale (µ) or scheme
ambiguities.

The generalized Crewther relation [60] can be derived by calculating the QCD
radiative corrections to the deep inelastic sum rules and Re+e− in a convenient renor-
malization scheme such as the modified minimal subtraction scheme MS. One then
algebraically eliminates αMS(µ). Finally, BLM scale-setting [61] is used to eliminate
the β-function dependence of the coefficients. The form of the resulting relation be-
tween the observables thus matches the result which would have been obtained had
QCD been a conformal theory with zero β function. The final result relating the
observables is independent of the choice of intermediate MS renormalization scheme.

The Crewther relation was originally derived assuming that the theory is confor-
mally invariant; i.e., for zero β function. In the physical case, where the QCD coupling
runs, all non-conformal effects are resummed into the energy and momentum trans-
fer scales of the effective couplings αR and αg1. The coefficients are independent of
color and are the same in Abelian, non-Abelian, and conformal gauge theory. The
non-Abelian structure of the theory is reflected in the expression for the scale Q∗.

Fits [225] to the experimental measurements of the R-ratio above the threshold
for the production of cc bound states provide the empirical constraint: αR(

√
s =

5.0 GeV)/π ≃ 0.08 ± 0.03. The prediction for the effective coupling for the deep
inelastic sum rules at the commensurate momentum transfer Q is then αg1

(Q =
12.33 ± 1.20 GeV)/π ≃ αGLS(Q = 12.33 ± 1.20 GeV)/π ≃ 0.074 ± 0.026. Mea-
surements of the Gross-Llewellyn Smith sum rule have so far only been carried out
at relatively small values of Q2 [266, 267]; however, one can use the results of the
theoretical extrapolation [268] of the experimental data presented in [269] to obtain
αextrapol

GLS (Q = 12.25 GeV)/π ≃ 0.093 ± 0.042. This range overlaps with the predic-
tion from the generalized Crewther relation. It is clearly important to have higher
precision measurements to fully test this fundamental QCD prediction.

The ratio of commensurate scales ΛBA is determined by the requirement that all
terms involving the β function are incorporated into the arguments of the running
couplings, as in the original BLM procedure [61]. Physically, the ratio of scales
corresponds to the fact that the physical observables have different quark threshold
and distinct sensitivities to fermion loops. More generally, the differing scales are
in effect relations between mean values of the physical scales which appear in loop
integrations. Commensurate scale relations are transitive; i.e., given the relation
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between effective charges for observables A and C and C and B, the resulting relation
between A and B is independent of C. In particular, transitivity implies ΛAB =
ΛAC × ΛCB. The shift in scales which gives conformal coefficients in effect pre-sums
the large and strongly divergent terms in the PQCD series which grow as n!(β0αs)

n,
i.e., the infrared renormalons associated with coupling-constant renormalization [270,
271, 272, 273].

Similarly, commensurate scale relations obey the “conformal correspondence prin-
ciple”: the CSRs reduce to correct conformal relations when NC and NF are tuned
to produce zero β function. Thus conformal symmetry provides a template for QCD
predictions, providing relations between observables which are present even in theo-
ries which are not scale invariant. All effects of the nonzero beta function are encoded
in the appropriate choice of relative scales ΛAB = QA/QB.

In the case of QED, the heavy lepton potential (in the limit of vanishing external
charge) is conventionally used to define the effective charge αqed(q

2). This definition,
the Dyson Goldberger-Low effective charge, resums all lepton pair vacuum polariza-
tion contributions in the photon propagator, and it is analytic in the lepton masses.
The scale of the QCD coupling is thus the virtuality of the exchanged photon. The
extension of this concept to non-abelian gauge theories is non-trivial due to the self
interactions of the gauge bosons which make the usual self-energy gauge dependent.
However, by systematically implementing the Ward identities of the theory, one can
project out the unique self-energy of each physical particle. This results in a gluonic
self-energy which is gauge independent and which can be resummed to define an effec-
tive charge that is related through the optical theorem to differential cross sections.
The algorithm for performing the calculation at the diagrammatic level is called the
“pinch technique” [63, 274, 275, 276]. The generalization of the pinch technique to
higher loops has recently been investigated [277, 278, 279, 280, 281, 282]. Binosi and
Papavassiliou have shown the consistency of the pinch technique to all orders in per-
turbation theory, thus allowing a systematic application to the QCD and electroweak
effective charges at higher orders. The pinch scheme is in fact used to define the
evolution of the couplings in the electroweak theory. The pinch scheme thus provides
an ideal scheme for QCD couplings as well.

22 Effective Charges and Unification

Recently Michael Binger and I have analyzed a supersymmetric grand unification
model in the context of physical renormalization schemes [283]. Our essential as-
sumption is that the underlying forces of the theory become unified at the unification
scale. We have found a number of qualitative differences and improvements in pre-
cision over conventional approaches. There is no need to assume that the particle
spectrum has any specific structure; the effect of heavy particles is included both
below and above the physical threshold. Unlike mathematical schemes such as di-
mensional reduction, DR, the evolution of the coupling is analytic and unification
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is approached continuously rather than at a fixed scale. The effective charge for-
malism thus provides a template for calculating all mass threshold effects for any
given grand unified theory. These new threshold corrections are important in making
the measured values of the gauge couplings consistent with unification. A compari-
son with the conventional scheme based on DR dimensional regularization scheme is
summarized in Fig. 16.

Figure 16: Asymptotic Unification. An illustration of strong and electroweak
coupling unification in an SU(5) supersymmetric model based on the pinch scheme
effective charge. The solid lines are the analytic pinch scheme PT effective couplings,
while the dashed lines are the DR couplings. For illustrative purposes, a3(MZ) has
been chosen so that unification occurs at a finite scale for DR and asymptotically
for the PT couplings. Here MSUSY = 200GeV is the mass of all light superpartners
except the wino and gluino which have values 1

2
mgx = MSUSY = 2mwx.

23 Conclusions on Commensurate Scale Relations

Commensurate scale relations have a number of attractive properties:

1. The ratio of physical scales QA/QB which appears in commensurate scale rela-
tions reflects the relative position of physical thresholds, i.e. quark anti-quark
pair production.

2. The functional dependence and perturbative expansion of the CSR are identical
to those of a conformal scale-invariant theory where βA(αA) = 0 and βB(αB) =
0.
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3. In the case of theories approaching fixed-point behavior βA(αA) = 0 and βB(αB) =
0, the commensurate scale relation relates both the ratio of fixed point couplings
αA/αB and the ratio of scales as the fixed point is approached.

4. Commensurate scale relations satisfy the Abelian correspondence principle [69];
i.e. the non-Abelian gauge theory prediction reduces to Abelian theory for
NC → 0 at fixed CFαs and fixed NF/CF .

5. The perturbative expansion of a commensurate scale relation has the same
form as a conformal theory, and thus has no n! renormalon growth arising
from the β-function. It is an interesting conjecture whether the perturbative
expansion relating observables to observable are in fact free of all n! growth. The
generalized Crewther relation, where the commensurate relation’s perturbative
expansion forms a geometric series to all orders, has convergent behavior.

Virtually any perturbative QCD prediction can be written in the form of a com-
mensurate scale relation, thus eliminating any uncertainty due to renormalization
scheme or scale dependence.

24 Inclusive Reactions: Complications from Final-

State Interactions

It is usually assumed—following the parton model—that the leading-twist structure
functions measured in deep inelastic lepton-proton scattering are simply the prob-
ability distributions for finding quarks and gluons in the target nucleon. In fact,
gluon exchange between the fast, outgoing quarks and the target spectators effects
the leading-twist structure functions in a profound way, leading to diffractive lep-
toproduction processes, shadowing of nuclear structure functions, and target spin
asymmetries. In particular, the final-state interactions from gluon exchange lead
to single-spin asymmetries in semi-inclusive deep inelastic lepton-proton scattering
which are not power-law suppressed in the Bjorken limit.

A new understanding of the role of final-state interactions in deep inelastic scat-
tering has recently emerged [34]. The final-state interactions from gluon exchange
between the outgoing quark and the target spectator system lead to single-spin asym-
metries in semi-inclusive deep inelastic lepton-proton scattering at leading twist in
perturbative QCD; i.e., the rescattering corrections of the struck quark with the target
spectators are not power-law suppressed at large photon virtuality Q2 at fixed xbj [31]
See Fig. 17. The final-state interaction from gluon exchange occurring immediately
after the interaction of the current also produces a leading-twist diffractive component
to deep inelastic scattering ℓp → ℓ′p′X corresponding to color-singlet exchange with
the target system; this in turn produces shadowing and anti-shadowing of the nuclear
structure functions [34, 38]. In addition, one can show that the pomeron structure
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function derived from diffractive DIS has the same form as the quark contribution of
the gluon structure function [35].

The final-state interactions occur at a light-cone time ∆τ ≃ 1/ν after the vir-
tual photon interacts with the struck quark, producing a nontrivial phase. Thus
none of the above phenomena is contained in the target light-front wave functions
computed in isolation. In particular, the shadowing of nuclear structure functions
is due to destructive interference effects from leading-twist diffraction of the virtual
photon, physics not included in the nuclear light-front wave functions. Thus the
structure functions measured in deep inelastic lepton scattering are affected by final-
state rescattering, modifying their connection to light-front probability distributions.
Some of these results can be understood by augmenting the light-front wave functions
with a gauge link, but with a gauge potential created by an external field created by
the virtual photon qq pair current [32]. The gauge link is also process dependent [33],
so the resulting augmented LFWFs are not universal.
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Figure 17: A final-state interaction from gluon exchange in deep inelastic lepton
scattering. The difference of the QCD Coulomb-like phases in different orbital states
of the proton produces a single proton spin asymmetry.

25 Single-Spin Asymmetries in Drell-Yan Processes

Single-spin asymmetries in hadronic reactions provide a remarkable window to QCD
mechanisms at the amplitude level. In general, single-spin asymmetries measure
the correlation of the spin projection of a hadron with a production or scattering
plane [284]. Such correlations are odd under time reversal, and thus they can arise in
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a time-reversal invariant theory only when there is a phase difference between different
spin amplitudes. Specifically, a nonzero correlation of the proton spin normal to a
production plane measures the phase difference between two amplitudes coupling the
proton target with Jz

p = ±1
2

to the same final-state. The calculation requires the
overlap of target light-front wavefunctions with different orbital angular momentum:
∆Lz = 1; thus a single-spin asymmetry (SSA) provides a direct measure of orbital
angular momentum in the QCD bound state.

Consider the SSA produced in semi-inclusive deep inelastic scattering ℓp↑ → ℓ′πX.
In the target rest frame, such a single target spin correlation corresponds to the T -odd
triple product ~Sp · ~pπ × ~q. (The covariant form of this correlation is ǫµνστS

µ
p p

νqσpτ
π.)

Significant asymmetries AUL and AUT of this type have in fact been observed for
targets polarized parallel to or transverse to the lepton beam direction [285, 286].

Dae Sung Hwang and Ivan Schmidt [31] and I have shown that the QCD final-
state interactions (gluon exchange) between the struck quark and the proton spectator
system in semi-inclusive deep inelastic lepton scattering can produce single-spin asym-
metries which survive in the Bjorken limit. Such effects are proportional to the matrix
element of a higher-twist quark-quark-gluon correlator in the target hadron, and thus
it has been assumed on dimensional grounds that any single-spin asymmetry arising
from this source must be suppressed by a power of the momentum transfer Q in
the Bjorken limit. However, another momentum scale enters into the semi-inclusive
process—the transverse momentum ~r⊥ = ~pπ⊥ − ~q⊥ of the emitted pion relative to
the photon direction, and we have shown that the power-law suppression due to the
higher-twist quark-quark-gluon correlator takes the form of an inverse power of r⊥
rather than Q.

Corrections from spin-one gluon exchange in the initial- or final-state of QCD
processes are not suppressed at high energies because the coupling is vector-like.
Therefore, as a consequence of the gauge coupling of QCD, single-spin asymmetries in
semi-inclusive deep inelastic scattering survive in the Bjorken limit of large Q2 at fixed
xbj and fixed ~r⊥. The resulting final-state phases are analogous to the “Coulomb”
phases to the hard subprocess which arises from gauge interactions between outgoing
charge particles in QED [287]. More specifically, we require the difference between the
gauge interaction phases for the Jz

p = ±1
2

amplitudes. The phases depend on the spin
because the outgoing particles interact at different impact separation corresponding
to their different relative orbital angular momentum.

In our paper [31], we explicitly evaluated the SSA for electroproduction for a
specific model of a spin-half proton of mass M with charged spin-half and spin-0
constituents of mass m and λ, respectively, as in the QCD-motivated quark-diquark
model of a nucleon. The basic leptoproduction reaction is then γ∗p → q(qq)0. Our
analysis predicts a nonzero SSA for the target spin normal to the photon to quark-
jet ~Sp · ~pq × ~q which can be determined by using a jet variable such as thrust to
determine the current quark direction; i.e., we predict a SSA even without final-state
jet hadronization. Our mechanism is thus distinct from a description of SSA based
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on transversity and phased fragmentation functions.
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Figure 18: The initial-state interaction in the Drell-Yan process.

Recently Collins [288] has pointed out some important consequences of these re-
sults for SSA in deep inelastic scattering. In this treatment, the final-state interactions
of the struck quark are incorporated into Wilson line path-ordered exponentials which
augment the light-cone wavefunctions. [See also [289].] Since the final-state interac-
tions appear at short light-cone times ∆x+ = O(1/ν) after the virtual photon acts,
they can be distinguished from hadronization processes which occur over long times.
As first noted by Collins, initial-state interactions between the annihilating antiquark
and the spectator system of the target can produce single-spin asymmetries in the
Drell-Yan process.

Dae Sung Hwang, Ivan Schmidt and I [105] have extended our analysis to initial-
and final-state QCD effects to predict single-spin asymmetries in hadron-induced hard
QCD processes. Specifically, we shall consider the Drell-Yan (DY) type reactions [290]
such as pp↑ → ℓ+ℓ−X. Here the target particle is polarized normal to the production
plane. The target spin asymmetry can be produced due to the initial-state gluon-
exchange interactions between the interacting antiquark coming from one hadronic
system and the spectator system of the other. This is shown in the diagram of Fig.
18. The importance of initial-state interactions in the theory of massive lepton pair
production, Q⊥ broadening, and energy loss in a nuclear target has been discussed in
Refs. [291, 292, 293].

The orientation of the target spin Sz = ±1/2 corresponds to amplitudes differing
by relative orbital angular momentum ∆Lz = 1. The initial-state interaction from
a gluon exchanged between the annihilating antiquark and target spectator system
depends in detail on this relative orbital angular momentum. In contrast, the initial
or final-state interactions due to the exchange of gauge particles between partons not
participating in the hard subprocess do not contribute to the SSA. Such spectator-
spectator interactions occur at large impact separation and are not sensitive to just
one unit difference ∆Lz = 1 of the orbital angular momentum of the target wave-
function.

Our mechanism thus depends on the interference of different amplitudes arising
from the target hadron’s wavefunction and is distinct from probabilistic measures
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of the target such as transversity. It is also important to note that the target spin
asymmetries which we compute in the DY and DIS processes require the same over-
lap of wavefunctions which enters the computation of the target nucleon’s magnetic
moment. In addition, by selecting different initial mesons in the DY process, we can
isolate the flavor of the annihilating quark and antiquark. The flavor dependence of
single-spin asymmetries thus has the potential to provide detailed information of the
spin and flavor content of nucleons at the amplitude level.

As in our analysis of semi-inclusive DIS, we calculated the single-spin asymmetry
in the Drell-Yan process induced by initial-state interactions by adopting an effective
theory of a spin-1

2
proton of mass M with charged spin-1

2
and spin-0 constituents of

mass m and λ, respectively, as in a quark-diquark model. We will take the initial
particle to be just an antiquark. The result for specific meson projectiles such as
Mp↑ → ℓ+ℓ−X is then obtained by convolution with the antiquark distribution of the
incoming meson. One can also incorporate target nucleon wavefunctions with a quark-
vector diquark structure. In a more complete study, one should allow for a many-
parton light-front Fock state wavefunction representation of the target. The results,
however, are always normalized to the quark contribution to the proton anomalous
moment, and thus are basically model-independent.

26 Crossing

There is a simple diagrammatic connection between the amplitude describing the
initial-state interaction of the annihilating antiquark, which gives a single-spin asym-
metry for the Drell-Yan process πp↑ → ℓ+ℓ−X, and the final-state rescattering am-
plitude of the struck quark, which gives the single-spin asymmetries in semi-inclusive
deep inelastic leptoproduction ℓp↑ → ℓ′πX. The crossing of the Feynman amplitude
for γ∗(q̃)p(P ) → (q̃ + r)(P − r) in DIS gives (−q̃ − r)p(P ) → γ∗(−q̃)(P − r) for DY
by reversing the four-vectors of the photon and quark lines. The outgoing quark with
momentum q̃+ r in DIS becomes the incoming antiquark with momentum −q̃ − r in
DY. We can use crossing of the Lorentz invariant amplitudes for DIS as a guide for
obtaining the amplitudes for DY amplitude [294].

In general, one cannot use crossing to relate imaginary parts of amplitudes to each
other, since under crossing, real and imaginary parts become connected. However, in
our case, the relevant one-gluon exchange diagrams in DIS and DY are both purely
imaginary at high energy, so their magnitudes are related by crossing. Thus a crucial
test of our mechanism is an exact relation between the magnitude and flavor depen-
dence of the SSA in the Drell-Yan reaction and the SSA in deep inelastic scattering.
We thus predict the DY SSA of the proton spin with the normal to the antiquark to
virtual photon plane: ~Sp · ~pq × ~̃q. It is identical – up to a sign – to the SSA computed

in DIS for ~Sp · ~pq × ~q.

The phase arising from the initial- and final-state interactions in QCD is analogous
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to the Coulomb phase of Abelian QED amplitudes. The Coulomb phase depends on
the product of charges and relative velocity of each ingoing and outgoing charged
pair [287]. Thus the sign of the phase in DY and DIS are opposite because of the
different color charge of the ingoing 3C antiquark in DY and the outgoing 3C quark
in DIS.

The asymmetry in the Drell-Yan process is thus the same as that obtained in
DIS, with the appropriate identification of variables, but with the opposite sign. This
has been stressed recently by Collins [288]. Therefore the single-spin asymmetry
transverse to the production plane in the Drell-Yan process can be obtained from the
results of our recent paper [31]:

Py = − e1e2
8π

2
(

∆M +m
)
r1

[ (
∆M +m

)2
+ ~r2

⊥
]
[
~r2
⊥ + ∆(1 − ∆)(−M2 +

m2

∆
+

λ2

1 − ∆
)
]

× 1

~r2
⊥

ln
~r2
⊥ + ∆(1 − ∆)(−M2 + m2

∆
+ λ2

1−∆
)

∆(1 − ∆)(−M2 + m2

∆
+ λ2

1−∆
)

. (37)

Here ∆ = q2

2P ·q = q2

2Mν
where ν is the energy of the lepton pair in the target rest frame.

An explicit calculation is given in Ref. [105]. An illustration of the predictions for
electroproduction is shown in Fig. 19.

The natural framework for the wavefunctions which appear in the SSA calculations
is the light-front Fock expansion [76, 10]. In principle, the light-front wavefunctions
for hadrons can be obtained by solving for the eigen-solutions of the light-front QCD
Hamiltonian. Such wavefunctions are real and include all interactions up to a given
light-front time. The final-state gluon exchange corrections which provide the SSA for
semi-inclusive DIS occur immediately after the virtual photon strikes the active quark.
Such interactions are not included in the light-front wavefunctions, just as Coulomb
final-state interactions are not included in the Schrödinger bound state wavefunctions
in QED. As noted above Collins [288] has argued that since the relevant rescattering
interactions of the struck quark occur very close in light-cone time to the hard inter-
action, one can augment the light-front wavefunctions by a Wilson line factor which
incorporates the effects of the final-state interactions in semi-inclusive DIS. However,
such augmented wavefunctions are not universal and process independent; for exam-
ple, in the case of the DY process, an incoming Wilson line of opposite phase must
be used.

It should be emphasized that the same overlap of light-front wavefunctions with
∆Lz = 1 which gives single-spin asymmetries also yields the Pauli form factor F2(t)
and the generalized parton distribution E(x, ζ, t) entering deeply virtual Compton
scattering [295, 296, 210, 85, 84]. Each quark of the target wavefunction appears
additively, weighted linearly by the quark charge in the case of the Pauli form factor
and weighted quadratically in the case of deep inelastic scattering, the Drell-Yan
reaction and deeply virtual Compton scattering.
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Figure 19: Model predictions for the target single-spin asymmetry Asin φ
UT for charged

and neutral current deep inelastic scattering resulting from gluon exchange in the
final state. Here r⊥ is the magnitude of the transverse momentum of the outgoing
quark relative to the photon or vector boson direction, and ∆ = xbj is the light-cone
momentum fraction of the struck quark. The parameters of the model are given in
the text. In (a) the target polarization is transverse to the incident lepton direction.

The asymmetry in (b) Asin φ
UL = KAsin φ

UT includes a kinematic factor K = Q
ν

√
1 − y for

the case where the target nucleon is polarized along the incident lepton direction. For
illustration, we have taken K = 0.26

√
x, with Elab = 27.6 GeV and y = 0.5.
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Thus the same physical mechanism which produces a leading-twist single-spin
asymmetry in semi-inclusive deep inelastic lepton scattering, also leads to a leading
twist single-spin asymmetry in the Drell-Yan process. The initial-state interaction
between the annihilating antiquark with the spectator of the target produces the re-
quired phase correlation. The equality in magnitude, but opposite sign, of the single-
spin asymmetries in semi-inclusive DIS and the corresponding Drell-Yan processes is
an important check of our mechanism.

It has been conventional to assume that the effects of initial- and final-state in-
teractions are always power-law suppressed for hard processes in QCD. In fact, this
is not in general correct, as can be seen from our analyses of leading-twist single-spin
asymmetries in the Drell-Yan process and semi-inclusive deep inelastic scattering.
The initial- and final-state interactions which survive in the scaling limit occur in
light-cone time τ = O(1/Q) immediately before or after the hard subprocess. Other
initial- and final-state interactions, such as those between the spectator of the incident
hadron and the spectator of the target hadron in the DY process, take place over long
time scales, and they only provide inconsequential unitary phase corrections to the
process. This is in accord with our intuition that interactions which occur at distant
times cannot affect the primary reaction.

Our formalism can be adopted to single-spin asymmetries in more general hard
inclusive reactions, such as pp↑ → πX, where the pion is detected at high transverse
momentum [297, 298]. In such cases, one must identify the relevant hard quark-gluon
subprocess and analyze a set of gluon exchange corrections which connect the spec-
tators of the polarized hadron with the active quarks and gluons participating in the
hard subprocess. However, this type of final-state interaction cannot be readily iden-
tified as an augmented target wavefunction. It is also clear from our analyses that
there are potentially important corrections to the hard quark propagator in hard
exclusive subprocesses such as deeply virtual Compton scattering or exclusive me-
son electroproduction. These rescattering interactions of the propagating quark can
provide new single-spin observables and will correct analyses based on the handbag
approximation.

The empirical study of single-spin asymmetries in hard inclusive and exclusive
processes thus provides a new window to the investigation of hadron spin, angular
momentum, and flavor structure of hadrons.

27 The Origin of Nuclear Shadowing and Anti-

shadowing

The Bjorken-scaling diffractive interactions on nucleons in a nucleus also lead to
shadowing and anti-shadowing of the nuclear structure functions [34, 38]. The physics
of nuclear shadowing in deep inelastic scattering can be most easily understood in the
laboratory frame using the Glauber-Gribov picture [299, 300]. The virtual photon, W
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or Z0, produces a quark-antiquark color-dipole pair which can interact diffractively or
inelastically on the nucleons in the nucleus. The destructive interference of diffractive
amplitudes from pomeron exchange on the upstream nucleons then causes shadowing
of the virtual photon interactions on the back-face nucleons [301, 302, 303, 304, 305,
306]. As emphasized by Ioffe [303], the coherence between processes which occur on
different nucleons at separation LA requires small Bjorken xB : 1/MxB = 2ν/Q2 ≥
LA. The coherence between different quark processes is also the basis of saturation
phenomena in DIS and other hard QCD reactions at small xB [307], and coherent
multiple parton scattering has been used in the analysis of p+A collisions in terms of
the perturbative QCD factorization approach [308]. An example of the interference
of one- and two-step processes in deep inelastic lepton-nucleus scattering illustrated
in Fig. 20.

An important aspect of the shadowing phenomenon is that the diffractive con-
tribution γ∗N → XN ′ to deep inelastic scattering (DDIS) where the nucleon N1 in
Fig. 20 remains intact is a constant fraction of the total DIS rate, confirming that
it is a leading-twist contribution. The Bjorken scaling of DDIS has been observed
at HERA [309, 310, 311]. As shown in Ref. [34], the leading-twist contribution to
DDIS arises in QCD in the usual parton model frame when one includes the nearly
instantaneous gluon exchange final-state interactions of the struck quark with the
target spectators. The same final state interactions also lead to leading-twist single-
spin asymmetries in semi-inclusive DIS [31]. Thus the shadowing of nuclear structure
functions is also a leading-twist effect.

It was shown in Ref. [38] that if one allows for Reggeon exchanges which leave
a nucleon intact, then one can obtain constructive interference among the multi-
scattering amplitudes in the nucleus. A Bjorken-scaling contribution to DDIS from
Reggeon exchange has in fact also been observed at HERA [310, 311]. The strength
and energy dependence of the C = + Reggeon t−channel exchange contributions
to virtual Compton scattering is constrained by the Kuti-Weisskopf [312] behavior
F2(x) ∼ x1−αR of the non-singlet electromagnetic structure functions at small x.
The phase of the Reggeon exchange amplitude is determined by its signature factor.
Because of this complex phase structure [38], one obtains constructive interference
and antishadowing of the nuclear structure functions in the range 0.1 < x < 0.2—a
pronounced excess of the nuclear cross section with respect to nucleon additivity [313].

In the case where the diffractive amplitude on N1 is imaginary, the two-step pro-
cess has the phase i×i = −1 relative to the one-step amplitude, producing destructive
interference. (The second factor of i arises from integration over the quasi-real inter-
mediate state.) In the case where the diffractive amplitude on N1 is due to C = +
Reggeon exchange with intercept αR(0) = 1/2, for example, the phase of the two-
step amplitude is 1√

2
(1 − i) × i = 1√

2
(i + 1) relative to the one-step amplitude, thus

producing constructive interference and antishadowing.

The effective quark-nucleon scattering amplitude includes Pomeron and Odderon
contributions from multi-gluon exchange as well as Reggeon quark-exchange contribu-
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Figure 20: The one-step and two-step processes in DIS on a nucleus. If the scattering
on nucleon N1 is via pomeron exchange, the one-step and two-step amplitudes are
opposite in phase, thus diminishing the q flux reaching N2. This causes shadowing of
the charged and neutral current nuclear structure functions.
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Figure 21: The quark contributions to the ratios of structure functions at Q2 =
1 GeV2. The solid, dashed and dotted curves correspond to the u, d and s quark
contributions, respectively. This corresponds in our model to the nuclear dependence
of the σ(u−A), σ(d−A), σ(s−A) cross sections, respectively. In order to stress the
individual contribution of quarks, the numerator of the ratio FA

2 /F
N0

2 shown in these
two figures is obtained from the denominator by a replacement qN0 into qA for only
the considered quark. As a result, the effect of antishadowing appears diminished.

tions [38]. The coherence of these multiscattering nuclear processes leads to shadowing
and antishadowing of the electromagnetic nuclear structure functions in agreement
with measurements. The Reggeon contributions to the quark scattering amplitudes
depend specifically on the quark flavor; for example the isovector Regge trajectories
couple differently to u and d quarks. The s and s couple to yet different Reggeons.
This implies distinct anti-shadowing effects for each quark and antiquark component
of the nuclear structure function. Ivan Schmidt, Jian-Jun Yang, and I [314] have
shown that this picture leads to substantially different antishadowing for charged and
neutral current reactions.

Figures 21–22 illustrate the individual quark q and anti-quark q contributions to
the ratio of nuclear 56Fe (structure functions R = FA

2 /F
N0

2 in a model calculation
where the Reggeon contributions are constrained by the Kuti-Weisskopf behavior [312]
of the nucleon structure functions at small xbj . Because the strange quark distribution
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Figure 22: The anti-quark contributions to ratios of the structure functions at
Q2 = 1 GeV2. The solid, dashed and dotted curves correspond to u, d and s quark
contributions, respectively. This corresponds in our model to the nuclear dependence
of the σ(u−A), σ(d−A), σ(s−A) cross sections, respectively. In order to stress the
individual contribution of quarks, the numerator of the ratio FA

2 /F
N0

2 shown in these
two figures is obtained from the denominator by a replacement qN0 into qA for only
the considered anti-quark.

is much smaller than u and d quark distributions, the strange quark contribution to
the ratio is very close to 1 although sA/sN0 may significantly deviate from 1.

Our analysis leads to substantially different nuclear antishadowing for charged
and neutral current reactions; in fact, the neutrino and antineutrino DIS cross sec-
tions are each modified in different ways due to the various allowed Regge exchanges.
The non-universality of nuclear effects will modify the extraction of the weak-mixing
angle sin2 θW , particularly because of the strong nuclear effects for the F3 structure
function. The shadowing and antishadowing of the strange quark structure function
in the nucleus can also be considerably different than that of the light quarks. We
thus find that part of the anomalous NuTeV result [315] for sin2 θW could be due to
the nonuniversality of nuclear antishadowing for charged and neutral currents. Our
picture also implies non-universality for the nuclear modifications of spin-dependent
structure functions. A new determination of sin2 θW is also expected from the neutrino
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scattering experiment NOMAD at CERN [316]. A systematic program of measure-
ments of the nuclear effects in charged and neutral current reactions could also be
carried out in high energy electron-nucleus colliders such as HERA and eRHIC, or by
using high intensity neutrino beams [317].

Thus the antishadowing of nuclear structure functions depends in detail on quark
flavor. Careful measurements of the nuclear dependence of charged, neutral, and elec-
tromagnetic DIS processes are thus needed to establish the distinctive phenomenology
of shadowing and antishadowing and to make the NuTeV results definitive. It is also
important to map out the shadowing and antishadowing of each quark component
of the nuclear structure functions to illuminate the underlying QCD mechanisms.
Such studies can be carried out in semi-inclusive deep inelastic scattering for the
electromagnetic current at Hermes and at Jefferson Laboratory by tagging the flavor
of the current quark. It is also important to measure antishadowing and test non-
universality in antiproton reactions at GSI such as pA→ ℓ+ℓ−X as well in pion- and
kaon-induced Drell-Yan reactions [318, 319].

28 Conclusions

New theoretical developments in QCD, together with a number of key experiments,
have brought new perspectives to our understanding of dynamical aspects of the
strong interactions.

Color transparency, as evidenced by the Fermilab measurements of diffractive
dijet production, implies that a pion can interact coherently throughout a nucleus
with minimal absorption, in dramatic contrast to traditional Glauber theory based
on a fixed σπn cross section. Color transparency gives direct validation of the gauge
interactions of QCD.

The observation that ≃ 10% of the positron-proton deep inelastic cross section at
HERA is diffractive points to the importance of final-state gauge interactions as well
as a new perspective to the nature of the hard pomeron. The same interactions are
responsible for nuclear shadowing and Sivers-type single-spin asymmetries in semi-
inclusive deep inelastic scattering and in Drell-Yan reactions. These new observations
are in contradiction to parton model and light-cone gauge based arguments that final
state interactions can be ignored at leading twist. The modifications of the deep
inelastic lepton-proton cross section due to final state interactions are consistent with
color-dipole based scattering models and imply that the traditional identification
of structure functions with the quark probability distributions computed from the
wavefunctions of the target hadron computed in isolation must be modified.

Empirical evidence continues to accumulate that the strange-antistrange quark
distributions are not symmetric in the proton, and that the proton wavefunction
contains charm quarks with large light-cone momentum fractions x. The recent ob-
servation by SELEX that doubly-charmed quarks are produced at large xF and small
pT in hadron-nucleus collisions is evidence for the diffractive dissociation of complex
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off-shell Fock states of the projectile. These observations contradict the traditional
view that sea quarks and gluons are always produced perturbatively via DGLAP
evolution. The existence of intrinsic glue and charm has strong consequences for
lepton-pair and open charm production Measurable with antiproton beams.

The dynamical origins of the antishadowing of nuclear structure functions in the
domain 0.1 < xBj < 1 is now becoming understood. An important conclusion is that
antishadowing is nonuniversal – different for quarks and antiquarks and different for
strange quarks versus light quarks. This has important consequences for antiproton–
nucleus Drell-Yan and other inclusive reactions.

The most dramatic spin correlation ever observed is the large 4 : 1 ANN asymmetry
measured in elastic proton-proton scattering at large CM angles at

√
s ≃ 5 Gev. If

this effect is due to intermediate uuduudcc states—corresponding to the formation
of “octoquark” resonances—then there should be comparable effects in elastic pp
scattering.

Dimensional counting rules for hard exclusive processes have now been derived in
the context of nonperturbative QCD using the AdS/CFT correspondence. The recent
measurements of the predicted s11 scaling behavior in deuteron photodisintegration
adds further evidence for the dominance of leading-twist quark-gluon subprocesses.
Lowest-order perturbation theory appears to give the proper scaling, but not the
magnitude of the measured hard exclusive cross sections, suggesting the importance
of higher-order corrections or even a nonperturbative resummation. I have given ev-
idence that the running coupling has constant fixed-point behavior, which together
with BLM scale fixing, helps explains the near conformal scaling behavior of the
fixed-CM angle cross sections. The angular distribution of hard exclusive processes
is generally consistent with quark interchange, as predicted from large NC consid-
erations. Other important tests of hard exclusive processes can be carried out with
antiproton beams, including timelike proton form factors. I have also noted the im-
portance of testing for the presence of J = 0 behavior in two-photon reactions such
as pp→ γγ as a test of the near-local two-photon couplings to quarks.

A rigorous prediction of QCD is the “hidden color” of nuclear wavefunctions at
short distances. I have noted that the two-scale behavior, as well as the large mag-
nitude of the hard component of the reduced deuteron form factor at high Q2, gives
importance evidence for this essential feature of the non-Abelian theory. This points
to the importance of studying hard p deuteron reactions.

I have emphasized several theoretical tools: light-front wavefunctions as a repre-
sentation of hadrons at the amplitude level, the Abelian correspondence principle,
and the conformal template. It is important to note that there is no renormalization
scale ambiguity in QCD when one uses effective charges to define the perturbative
expansions or when one related observable to observable, as in commensurate scale
relations such as the generalized Crewther relation.

I have also discussed how the remarkable AdS/CFT duality, which has been estab-
lished between supergravity string theory in 10 dimensions and conformal extensions
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of QCD, is now providing to a new understanding of QCD at strong coupling and a
new examination at its nearly-conformal structure.

The antiproton storage ring HESR to be constructed at GSI will open up a new
range of perturbative and nonperturbative tests of QCD in exclusive and inclusive
reactions. I have discussed 21 tests of QCD using antiproton beams which can illumi-
nate these novel features of QCD. The proposed experiments include the formation of
exotic hadrons, measurements of timelike generalized parton distributions, the pro-
duction of charm at threshold, transversity measurements in Drell-Yan reactions, and
searches for single-spin asymmetries. The interactions of antiprotons in nuclear tar-
gets will allow tests of exotic nuclear phenomena such as color transparency, hidden
color, reduced nuclear amplitudes, and the non-universality of nuclear antishadowing.
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